需要专注于子午水,南伯里,机组人员山和大通公园的四个场所制作区域。机组人员山和大通公园位于自治市镇的北部。,他们的能力是独特的,可以容纳很大一部分新家庭住房,这是两个大规模战略领域的一部分,以实现未来的增长。虽然它们将充当独立社区,但由于其位置和规模,两者之间存在相互关系和更广泛利益的机会。他们位于戈登山线附近,共同带来了临界质量,以协助改进服务。位于农村转型区域内,这两个领域有机会在理事会中发挥关键作用,在更广泛的计划中重新野生和自然恢复,并改善了对乡村的机会,并实现了计划第2章中规定的战略目标,“深绿色的地方”。
临界点(TP)通常被认为是通过单个主导的积极反馈对系统状态的不稳定来实现的,关键的强迫参数阈值。但是,与其他子系统,其他反馈和空间异质性耦合可能会促进进一步的小振幅,突然对地球物理流动的重新组织迫使水平低于关键阈值。使用原始方程式海洋模型,我们模拟了由于冰川熔体的增加而导致大西洋子午倾覆循环(AMOC)的崩溃。在崩溃之前,会发生各种突然的,质量变化的质量变化。这些中间临界点(ITP)是多个稳定循环状态之间的过渡。使用2.75亿年的模型模拟,我们发现了一个非常坚固的稳定性景观,其参数区域最多为9个共存稳定状态。通过一系列ITP的AMOC崩溃的路径取决于融合水输入的变化速率。这挑战了我们预测和定义TPS安全限制的能力。
摘要。MIS 3在赤道以北和阿拉伯半岛以北的非洲环境条件长期以来一直有争议,这是由于数据稀缺和方法论上的警告。在本文中,我们比较了245个大陆水文记录和11个长而连续的大陆和海洋核心与IPSL一般循环模型的结果,讨论了北热带非洲,北部(地中海)非洲和阿拉伯半岛之间59至29 ka之间的水文变化。尽管通常有冰川的环境,但潮湿的条件已广泛扩大,为许多湖泊,河流和湿地提供了位置。我们研究的主要结果是表明,由于夏季季风降雨和冬季的地中海雨水,潮湿的状况比阿拉伯半岛更早,在阿拉伯半岛比非洲更为普遍。驱动MIS 3湿度的机制涉及全球冷却因子,例如温室浓度和冰量,这影响了可用的水分,轨道强迫,这会影响季风循环以及对大西洋子午倾覆循环状态(AMOC)的振幅和敏感性。
无处不在的中尺度涡流对热量的海洋运输在调节气候变异性和重新分布全球变暖下被海洋吸收的多余热量重新分布中起着至关重要的作用。涡流长期以来一直简化为轴心涡旋及其对热传输的影响尚不清楚。在这里,我们结合了卫星和漂流者的数据,并表明海洋中尺度的涡流是不对称的和方向依赖的,并且受其自动维持性质及其动态环境的控制。涡流诱导的He的方向和振幅都受到涡流的不对称和方向依赖性的显着影响。当将涡流场分解为不对称和对称成分时,涡流动能在这两个组件之间表现出几乎相等的分配。总涡流引起的子午热孔类似地使对称成分引起的热孔增加了一倍,从而突出了涡流不对称的关键贡献对涡流诱导的海洋热传输的幅度。
摘要大西洋子午倾覆(AMOC)的崩溃将对全球降水模式产生重大影响,尤其是在脆弱的热带季风区域。我们在实验中评估了这些影响,这些实验将相同的淡水面包植入具有BISTABL AMOC的四个状态的气候模型。与以前的结果相反,我们发现降水的空间和季节性变化在各个模型之间都非常一致。我们专注于南美季风(SAM),西非季风(WAM),印度夏季季风(ISM)和东亚夏季季风(EASM)。模型始终提出对WAM,ISM和EASM的实质性破坏,其潮湿且较长的干燥季节(-29.07%,-18.76%和-3.78%的集合分别平均年降雨量变化)。模型也同意SAM的变化,这表明与以前的研究相反,降雨总体上升。在南部亚马逊( + 43.79%)中,这些更为明显,伴随着降低季节的长度。在模型中始终如一,我们的结果表明,所有热带季风系统响应AMOC崩溃,对所有热带季风系统进行了稳健而重大的重排。
淡水输入的关键位置驱动大西洋子午倾覆(AMOC)放缓及其气候反应尚无定论。使用最先进的全球气候模型,我们进行淡水软管实验,以重新检查AMOC敏感性及其气候影响。irminger盆地是额外淡水通量的最有效区域,导致最大的AMOC弱化。尽管全球温度和降水反应是相对均匀的,次洲互惠的反应(尤其是在北部纬度)是异质的。在高纬度地区,海冰对淡水通量的反应和相关的冰 - 阿尔贝托的反馈决定了温度的变化。在热带和热带区域中,温度动力学是通过大气循环和海洋热传输来塑造的。降水显示由于表面湍流变化以及热带收敛区(ITCZ)的南部运动而导致的季节性和区域变异性。气候极端的广泛异质性强调了监测与AMOC放缓相关的淡水释放区域的需求。这些发现对理解古气候和未来的AMOC影响具有重要意义。
摘要大西洋子午倾覆(AMOC)的崩溃将对全球降水模式产生重大影响,尤其是在脆弱的热带季风区域。我们在实验中评估了这些影响,这些实验将相同的淡水面包植入具有BISTABL AMOC的四个状态的气候模型。与以前的结果相反,我们发现降水的空间和季节性变化在各个模型之间都非常一致。我们专注于南美季风(SAM),西非季风(WAM),印度夏季季风(ISM)和东亚夏季季风(EASM)。模型始终提出对WAM,ISM和EASM的实质性破坏,其潮湿且较长的干燥季节(-29.07%,-18.76%和-3.78%的集合分别平均年降雨量变化)。模型也同意SAM的变化,这表明与以前的研究相反,降雨总体上升。在南部亚马逊( + 43.79%)中,这些更为明显,伴随着降低季节的长度。在模型中始终如一,我们的结果表明,所有热带季风系统响应AMOC崩溃,对所有热带季风系统进行了稳健而重大的重排。
抽象的格陵兰冰核心记录以Dansgaard -Oeschger(D -O)事件为特色,它们是突然变暖的发作,然后在冰河时代气候下逐渐冷却。本研究中使用的三个气候模型(CCSM4,MPI -ESM和HADCM3)显示自发自我维护的D -O样振荡(尽管在幅度,持续时间和形状上的差异差异,但在较小的,较窄的二氧化碳(CO 2)浓度较大的窗口中非常相似,浓度非常狭窄(CO 2)浓度185-230 ppm。该系列与海洋同位素阶段3(MIS 3:27.8至59.4千年的BP,以下KA)相匹配,以下是D -O事件最常见的时期。从三个气候模型中的见解指向北大西洋(NA)Sea -Ice覆盖范围,这是D -O型振荡背后的关键要素,它是“小费元素”。其他气候状态特性,例如平均大西洋子午倾覆强度,全球平均温度和盐度梯度在大西洋中不能确定在所有三种模型中是否都会发生D -O型行为。
南方海洋在全球碳循环中起着基本作用,主导着通过寄生的寄生和碳的海洋吸收,并通过寄生的碳和碳来调节过去,现在和将来的气候中的大气碳浓度。然而,在那里发现的遥远和极端的条件使南大洋永远成为地球上最困难的地方之一和建模,从而在我们对海洋碳循环的了解中显着和持久的不确定性。传统上使用区域均值框架来理解南大洋中碳的流动,其中子午过度转向循环驱动在空气 - 海量通量和内部海洋碳浓度中观察到的纬度变异性。然而,最近的进步主要取决于范围内的观察和建模能力,揭示了在较小尺度上作用的过程的重要性,包括盆地尺度的划分区域不对称的混合层深度,中尺度涡流涡流,以及高度大气的差异,并超出了范围的范围,并弥补了范围的范围,并在范围内进行了范围,并在范围内进行了范围的范围。对南大洋中的碳循环有四维的理解。
气候系统的临界点可以定义为关键阈值,其跨越会导致自我加强和气候系统功能的不可逆转变化。临界点是令人担忧的,因为一旦越过,气候变化的影响就会加速并变得无法控制,从而使以前的气候状态变得非常困难或不可能。目前,我们知道随着气候变化的进展,可以触发的25个潜在的气候系统转化点,这将对自然和社会产生严重的全球或区域后果。这些转折点不再是“低可能性,高影响力”事件,而是随着气候变化的发展而成为“高概率,高影响力”事件2。最近对气候变化的面板(IPCC)(IPCC)第六次评估报告(AR6)3,尤其是对全球气候系统的研究,以及最新的观察点2,以及对全球范围的研究,以及对全球范围的探测点,以及对全球范围的2号报告,以及对全球范围的2,以及conteription contips 2,以及最新的观察点2,以及对全球的范围2,以及对全球范围的2次介绍,并促进了临界点之间的最新论述。大西洋子午翻转循环(AMOC)的临界点。在针对未来威胁的新研讨会和事件中,与临界点相关的风险越来越多。