从BCP中自我组装了多种光子架构,范围从远程有序结构(例如,紧密包装的胶束,[4]六角形圆柱体,[5] Double Diamond,[6] [6]甲状腺,[7] gyroids,[7] [7] [7]立方体和相关的网络[8],例如phots Systems,以及玻璃,以及玻璃,以及玻璃,以及范围的距离,又有效果,又是镜头。[9]然而,在过去的二十年中,大多数研究集中在线性和刷子块共聚物(分别是LBCP和BBCP)中的层状结构上,如图1所示。此纳米结构很喜欢,因为它既简单又能作为一维光子多层层,它提供了最佳的光学性能(即来自最小尺寸的最大反射率)。虽然先前的评论总结了制造策略和基准的光学性能,但[2,10]从所采用的聚合物库的角度来看,该领域中没有概述。从这个角度来看,我们对光子多层膜和粒子的归类和系统分析,并通过从材料角度强调当前的挑战和局限性,我们
摘要 — 分析了致力于量子计算机设计问题的研究成果。讨论了与量子计算机创建相关的主要问题。提出了一种基于“自上而下”策略的解决创建真正量子计算机问题的全新方法,并进行了论证。该策略可以通过使用由二维材料(特别是石墨烯)形成的纳米触发器对量子比特的量子态进行初步可视化来实现。这指的是所有状态(包括纠缠态)的可视化(物化),这主要决定了量子计算机理论上可能的大量数学资源。提出了基于 q 位“先验”量子态的电子设备的框图。结果表明,为了实现量子计算过程,每个物化(可视化)的 Shor 单元应对应于电子方案的一个元素。该设备包括一个块,其中包含至少 10 10 个纳米触发器,它们充当量子计算的 q 位,这些触发器是使用石墨烯纳米带创建的,并由特殊元素控制。后者代表一种自组织量子点,在磁性方面具有两种本质上不同的状态。这种量子点是在化合物的基础上制备的,其分子以分子内重排为特征。纳米触发器用于形成可逆逻辑块或门。每个门包含三个触发器来执行逻辑操作。所提供的设备是一个嵌入在数字计算机中的附加电子单元,这使得能够根据量子物理学规定的要求实现计算过程。索引词——量子处理器、q-bit、石墨烯、纳米触发器、Toffoli 门。