摘要 本研究使用具有平面扫描功能的电光 (EO) 传感器演示了基于光子学的 300 GHz 频段近场测量和远场特性分析。待测场在 EO 传感器处上变频至光域 (1550 nm),并通过光纤传送至测量系统。在 13 s 的一维测量时间内,系统的典型相位漂移为 0.46 ◦,小于该时间尺度下相位测量的标准偏差 1.2 ◦。将从测得的近场分布计算出的喇叭天线远场方向图与使用矢量网络分析仪通过直接远场测量系统测得的远场方向图进行了比较。对于与角度相关的参数,我们通过近场测量获得的结果的精度与通过直接远场测量获得的结果相当。我们的近场测量结果与直接远场测量结果之间的旁瓣电平差异(约 1 dB)归因于探针校正数据的过量噪声。我们相信,基于光子学的球形 EO 探针扫描近场测量将为 300 GHz 频段高增益天线的表征铺平道路。
1 (0XVD(OHNWURQLN'HYUH(OHPDQODUÕ8OXGD÷ hQLYHUVLWHVL(OHNWURQLN0KHQGLVOL÷L%|OP%XUVD 2009. 2 '/HEOHELFL6Ho
纳米晶体 (NC) 现已成为光子应用的既定基石。然而,它们在光电子学中的集成尚未达到同样的成熟度,部分原因是人们认为瓶颈在于跳跃传导导致的固有有限迁移率。人们做出了巨大努力来提高这种迁移率,特别是通过调整粒子表面化学以实现更大的粒子间电子耦合,并且已经实现了 ≈ 10 cm 2 V − 1 s − 1 的迁移率值。人们承认,这个值仍然明显低于 2D 电子气体中获得的值,但与具有类似约束能的外延生长异质结构中垂直传输的迁移率相当。由于进一步提高迁移率值的前景似乎有限,因此建议应将精力集中在探索跳跃传导带来的潜在好处上。这些优势之一是扩散长度对偏置的依赖性,这在设计基于 NC 的设备的偏置可重构光学响应方面起着关键作用。本文将回顾构建偏置激活设备的一些最新成果,并讨论设计未来结构的基本标准。最终,跳跃传导是产生低无序材料无法提供的新功能的机会。
MID-IR波长范围(通常定义为跨度为3至13 µm)覆盖了各种大气气体的分子吸收区域。因此,MID-IR集成光子学,即将复杂和先进的光学功能整合到芯片上,这代表了开发基于光谱的气体检测的紧凑,成本效益的仪器的有希望的途径[1-6]。这些结构通常是用光刻技术制造的,这些技术限制了所得设备的可重新配置和可调性。通过在介电波导顶部涂上额外的层[7],证明了一些修剪后的后处理能力。走得更远,并为这些结构启用真正的后制成调音机制,一种有吸引力的方法是将它们与相变材料(PCM)相结合。这些材料可以可逆地在具有不同光学特性的无定形和晶体相之间切换。常规PCM的众所周知的例子是GE 2 SB 2 TE 5(GST)[8,9]和VO 2 [10-14]。GST由于其出色的特征而引起了强烈的关注,包括其两个阶段(∆ n> 2.5),低切换温度(〜180°C)之间的近红外折射率对比度以及保持其状态而无需任何电源的能力。在电信C波段上运行的许多集成设备,例如光学记忆[15],模式转换器[16],反射调节器[17],环谐振器[18],窄带过滤器[19]或基于GST的相位变速器[20] [20]。然而,尽管不断研究和提高其潜力的努力,但其可用性仍然主要限于要求光的应用
摘要:本文通过Zns薄膜和波导的结构和光学特征,介绍了二阶非线性光子学对二阶非线性光子学的优势。1。引言是由物质辐射相互作用引起的非线性光学现象,这已经得到了很大改善,这已经大大改善了光子设备的开发,可以在基于非线性光学材料的指导结构内强限制电磁场。[1]。到目前为止,只有很少的研究集中在硫化锌(ZNS)上。这种材料对于非线性光学元件来说是有希望的,因为它是电信波长[2]的高折射率,透明度的宽光谱,高第二[3]和三阶非线性系数[4]和多晶结构,并且有可能充分利用非线性过程[5]。从应用的角度来看,ZnS沉积方法的种类(其中一些是低成本)也代表了有趣的技术优势。在这项工作中,我们描述了由磁控溅射沉积的ZnS薄膜的结构和光学特性,以及第一个基于ZnS的波导的制造过程及其线性表征。
我想感谢霍普金斯先生的持续承诺和致力于每年使日记栩栩如生的奉献精神,无论是通过帮助我们决定主题,组织委员会会议和披萨午餐,还是与打印机联系,我们都非常感谢您的时间和努力,这些时间和努力都可以提供这样的出版物,并撰写了撰写,以及您编写的指导,并且已撰写了读者的指导,并且已读取,并且已读取,读取,读取,读取,绘制的工作。感谢您,Aiden Lim设计了我们的促销海报以及我们的前封面,这是几种迭代和改进的最终产品。感谢詹姆斯·米勒(James Miller)博士抽出宝贵的时间来贡献一篇非常有趣的文章,最重要的是,感谢委员会成员的勤奋和热情。当然,这是一个广泛的过程编辑,并缩小了我们今年收到的38份意见,但是您不懈的努力在今年的《杂志》(Journal)的成功中发挥了重要作用。《科学杂志》最终是由学生主导的学生工作的庆祝活动,因此,如果没有委员会成员,就不可能出版。
摘要 我们简要总结了 15 多年来对基于二维材料 (2DM) 的自旋电子学的深入研究,这些研究使我们深入了解了基本的自旋传输机制、磁隧道结和自旋轨道扭矩器件中的新功能,以及使石墨烯成为自旋活性材料的强大而前所未有的邻近效应能力。尽管基于 2DM 的功能性器件和相关异质结构的组合不断增加,但我们概述了仍然阻碍自旋电子学在自旋逻辑和非易失性存储器技术中的实际应用的关键技术挑战。最后,我们提到了当前和未来的方向,这些方向将保持基于 2DM 和范德华异质结构的超紧凑自旋电子学领域的发展势头。
11。实验模型是用方向支撑30的氢爆炸。ioana tuhut ligia,英格。Andrada Matei,博士。 eng。 Full-Mihai Pascuscu,博士。 eng。 Daniel-Gheorore博士。 eng。 Adrian Simon-Marinica 语法语法受支持的促进的铁催化剂,助理。 证明。玛丽亚博士马尔可瓦,阿索。 证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。 证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。 火焰助手:理解对Mensans的燃烧,Assoc。 证明。 Castle Plant博士。 证明。大卫·莱昂(David Leon) 证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。 证明。 David Bolonio博士... 静液压动力传输系统此风力涡轮机,博士学位。英语 Dumirescu,博士英语 Chirita的Alexander-Polifron博士学习。 eng。 Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Andrada Matei,博士。eng。Full-Mihai Pascuscu,博士。eng。Daniel-Gheorore博士。 eng。 Adrian Simon-Marinica 语法语法受支持的促进的铁催化剂,助理。 证明。玛丽亚博士马尔可瓦,阿索。 证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。 证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。 火焰助手:理解对Mensans的燃烧,Assoc。 证明。 Castle Plant博士。 证明。大卫·莱昂(David Leon) 证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。 证明。 David Bolonio博士... 静液压动力传输系统此风力涡轮机,博士学位。英语 Dumirescu,博士英语 Chirita的Alexander-Polifron博士学习。 eng。 Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Daniel-Gheorore博士。eng。Adrian Simon-Marinica语法语法受支持的促进的铁催化剂,助理。证明。玛丽亚博士马尔可瓦,阿索。证明。 Antonina博士斯蒂芬,弗拉基米尔·P·莫尔查诺夫(Vladimir P. Molchanov)博士,同事。证明。 N. Demidenko博士,Mikhail G. Sulman博士99 13。火焰助手:理解对Mensans的燃烧,Assoc。证明。 Castle Plant博士。证明。大卫·莱昂(David Leon)证明。伊莎贝尔(Isabel)博士评估,罗伯茨(Roberts),阿索(Asso)。证明。 David Bolonio博士...静液压动力传输系统此风力涡轮机,博士学位。英语Dumirescu,博士英语Chirita的Alexander-Polifron博士学习。eng。Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。 Maria Carla Carla Popescu 115。 证明。 Beyoning博士,协会。 证明。 Demidenko Galili博士,协会。 证明。 Beryozkina Svelana博士,博士学位。 证明。大卫·莱昂(David Leon)Stephen我有Sefu,博士学位。计划Adriana Mariana Bors,协助。Maria Carla Carla Popescu 115。证明。 Beyoning博士,协会。证明。 Demidenko Galili博士,协会。证明。 Beryozkina Svelana博士,博士学位。证明。大卫·莱昂(David Leon)芳香族聚合物作为PT颗粒稳定剂的性质对芳族和多氨基底物的液相氢化中的活性和选择性的影响。Prof. Dr. Linda Nikoshvili, Ms. Elena Bakhvalova .......................................... 123 16.调查太阳能发电厂的并行操作的过渡过程和紧急干扰下的网格。Bohirjon Sharifov,Murodbek Safaraliev博士,Anvari Ghulomzoda博士,博士。 Mukhammadjon Odinabekov ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 烟花生命周期分析:环境影响和改善机会,协助。 David Bolonio博士,同事。 研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................Bohirjon Sharifov,Murodbek Safaraliev博士,Anvari Ghulomzoda博士,博士。Mukhammadjon Odinabekov ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................烟花生命周期分析:环境影响和改善机会,协助。David Bolonio博士,同事。 研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................David Bolonio博士,同事。研究员Roberto Paredes教授Isabel Amez博士,协助。 Prof. Dr. Blanca Castells ............................................................................................... 139 18. 使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。 教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................研究员Roberto Paredes教授Isabel Amez博士,协助。Prof. Dr. Blanca Castells ............................................................................................... 139 18.使用无人机监测太阳能农场 - 利用技术和福利,Eng Tymoteusz Turlej博士。教授Krzysztof Kolodziejczyk,MSC Eng。 Jedrzej Minda ..................................................... 149 19. 优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................教授Krzysztof Kolodziejczyk,MSC Eng。Jedrzej Minda ..................................................... 149 19.优化了将微晶纤维素催化转化为糖醇的过程条件,Oleg Manaenkov博士,Olga Kislitsa博士,Antonina Stepacheva博士,Antonina Stepacheva博士,Linda Nikoshvili博士,Valentina Matveeva教授,Valentina Matveeva教授.............................................................................................................................................................................................................................................................................................................................
将胶体量子发射器确定性地整合到硅基光子器件中将推动量子光学和纳米光子学的重大进展。然而,将 10 纳米以下的粒子以纳米级精度精确定位到微米级光子结构上仍然是一项艰巨的挑战。在这里,我们引入了腔形调制折纸放置 (CSMOP),它利用 DNA 折纸的形状可编程性,选择性地将胶体纳米材料沉积在光刻定义的光刻胶腔内,这些光刻胶腔被图案化到任意光子器件上,具有高产量和方向控制。软硅化钝化可稳定沉积的折纸,同时保留其空间可编程的 DNA 杂交位点,从而实现等离子体金纳米棒 (AuNR) 和半导体量子棒 (QR) 的位点特异性附着。这分别提供了对光散射和发射偏振的控制,并在氮化硅波导、微环谐振器和靶心腔内确定性地集成了单个 QR。因此,CSMOP 为胶体纳米材料集成到光子电路中提供了一个通用平台,具有为量子信息科学和技术提供强大推动力的广阔潜力。