•具有Excelitas的X-Cite Xylis™II宽光谱LED照明系统的显微镜演示,用于常规和高级荧光成像应用的ARC灯更换,以及带有反向添加图像传感器的PCO.Edge 10 Bi Clhs摄像头,可提供多达85%的量子效率,可提供高达85%的宽度光谱。•多光谱技术,包括PCO.pixelfly™1.3 SWIR高性能机器摄像机,带有Ingaas图像传感器,在短波红外(SWIR)中敏感,近红外且可见的电磁谱系范围;除了具有模块化设计和无限校正光学的Optem®融合微成像系统,可在机器视觉,自动化光学检查和非接触式计量方面的最大多功能性。•光学相干断层扫描(OCT)演示展示了Excelitas的Axsun高速SS-OCT可调激光发动机的调音带宽,输出功率,扫描速度和连贯性长度,从而在下一代OCT系统中削减性能。Excelitas Photonics West Booth的其他演示将包括:•使用Excelitas'PCO.Edge®26CLHS SCMOS摄像机和NewLinos®Inspec.xInspec.x 5.6/105 Vis-nir镜头进行自动排序。此演示提供了由基于AI的图像处理驱动的快速响应分类,使用NVIDIA JETSON板,在图像数据流中•使用Excelitas的新PCO.DIMAX 3.6 ST高速相机和Linos D.Fine HR-M系列镜头在高速分析,分析和检查应用程序中使用高速对象识别。•固态激光雷达演示展示了带有单片4通道芯片的自定义16通道脉冲激光模块。低功率digipyro家族可以是ASIC集成驱动程序的芯片具有Excelitas高功率激光器(50 a的150 W /通道)的功能,以及CMOS SPAD(单个Photon Avalanche二极管)阵列,用于LIDAR系统应用。•具有Excelitas低功率Digipyro PYD 1598的实时运动检测演示,以1.8V供应电压为新的行业领先标准,供应电流大大降低。
广告号SETS/Chn/Rec/2024-25/32 Date: 16.01.2025 Society for Electronic Transactions and Security [SETS] is a Society under Societies Registration Act, XXI of 1860, dedicated to carry-out Research and Development in the field of Information Security focusing on the key verticals, namely, Cryptology and Computing, Hardware Security, Quantum Security and Network Security.On-line applications are invited from enthusiastic Indian researchers having excellent academic record and proven scientific achievements along with requisite experience and a high degree of motivation and desire to take up research and development as a career in the field of Information Security focusing on the key verticals, namely, Cryptology and Computing, Hardware Security, Quantum Security and Network Security to fill up the posts (1 No) of Scientist-F on Direct Recruitment / Deputation Mode as detailed below: Post代码:2025-F-001薪水和津贴:薪资13A:1,31,100-2,16,600卢比,以及根据套装规范的规定/福利/福利。详细资格的描述,经验要求如下:用于直接招聘A.基本资格i)B.E./ B.Tech。具有60%或更高的标记或电子通信/计算机科学和工程/信息技术/信息系统 div>的标记或同等CGPA
项目名称:二维量子材料和超导电子学。描述:研究重点是 Nb 基二维材料,特别是二硫化铌 (NbS₂) 和二硒化铌 (NbSe₂),以及它们在超导场效应晶体管 (FET) 中的应用。这些材料因其独特的特性而处于材料科学的前沿,包括单层超导性[1]。超导性的特点是零电阻和排除磁场,是现代材料科学的基本原理。虽然已经提出了许多利用超导性的设备并付诸实施,但在创造可扩展的高质量材料和设备方面仍然存在挑战[2-4]。传统的制造方法,如溅射,通常会导致材料质量不理想,特别是对于需要精确控制厚度和纯度的应用[5]。该项目旨在通过利用二维过渡金属二硫属化物 (TMDC) 的卓越特性来解决这些限制,这些特性可以精确控制材料厚度和晶体纯度。在本研究中,候选人将专注于合成基于 Nb 的 2D 材料并将其集成到器件架构中以创建超导 FET。这些器件将利用电场来调节超导性,实现新功能并为超导电子学的潜在突破铺平道路。这项工作将涉及在洁净室环境中进行先进的材料合成、广泛的特性描述和器件制造,以及传输测量以研究器件在不同条件下的行为。该项目提供了为材料科学的变革领域做出贡献的机会,并有可能产生重大的技术影响。成功的候选人将加入一个充满活力的跨学科研究团队,该团队配备了最先进的设施,并受益于该领域领先研究人员的指导和合作。外部参考:[1] Xi 等人,《自然物理》,12(2):139–143 (2016) [2] Puglia 等人,《应用物理快报》,116(25) (2020)。 [3] De Simoni 等人,Nature Nanotechnology, 13(9):802–805 (2018) [4] Paolucci 等人,Nano letters, 19(9):6263–6269 (2019) [5] Durrell 等人,Reports on Progress in Physics, 74(12):124511 (2011). 主要指导老师:Camilla Coletti ( 2D 材料工程 ) 其他指导老师:Antonio Rossi ( 2D 材料工程 ) 关键专业知识:
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
版权所有©2024,由电气与电子工程师协会,Inc.。保留所有权利版权和重印许可:允许摘要借助来源。图书馆可以超出美国版权法的限制,以私下使用顾客在本卷中在第一页的底部携带代码的文章,前提有关其他复制,重印或重新出版许可,请写信给IEEE版权所有经理,IEEE服务中心,445 Hoes Lane,Piscataway,NJ 08854。保留所有权利。***这是IEEE数字库中显示的内容的打印表示形式。E-Media版本中固有的某些格式问题也可能出现在此打印版本中。IEEE目录编号:CFP2486C-POD ISBN(按需打印):979-8-3503-8037-8 ISBN(在线):979-8-3503-8036-1 ISSN ISSN:2995-0244此出版物可从:2995-0244提供的额外副本。电话:(845)758-0400传真:(845)758-2633电子邮件:curran@proceedings.com网站:www.proceedings.com
我们报告了用于新兴低温量子电子学平台的布洛赫晶体管 (BT) 的开发情况。BT 是一种完全量子非耗散设备,有助于将量化电流精确传输到电路,I =2 efn(其中 n 是整数,e 是电子电荷,f 是微波频率)。它在经典电子学中没有类似物,但它是量子电子学所必需的。量化电流的幅度可通过四个控件进行调整:栅极或偏置电压以及微波的频率或幅度。该设备具有在布洛赫振荡范围内工作的约瑟夫森结、隔离电磁电路和微波馈电引线。BT 在 ∼ 5 µ V 的偏置下工作,可以提供高达 10 nA 的量化电流。
学者工程与技术杂志缩写关键标题:Sch J Eng Tech ISSN 2347-9523(印刷版)| ISSN 2321-435X(在线) 期刊主页:https://saspublishers.com 应用人工智能算法预测镰状细胞危机可能性 Essang Samuel Okon 1*、Kolawole Olamide Michael 1、Runyi Emmanuel Francis 2、Ante Jackson Efiong 3*、Ogar-Abang Micheal Obi 1、Auta Jonathan Timothy 4、Okon Paul Edet 5、Effiong Raphael Dominic 6、Ukim Akanimo Jimmy 5 1 尼日利亚阿克帕布约亚瑟贾维斯大学数学与计算机科学系 2 尼日利亚乌盖普联邦理工学院统计系 3 尼日利亚姆克帕塔克 Topfaith 大学数学系 4 尼日利亚阿布贾非洲科技大学纯数学与应用数学系 5 电气/电子学系Topfaith 大学,尼日利亚姆克帕塔克 6 卡拉巴尔大学数学系,尼日利亚卡拉巴尔 DOI:https://doi.org/10.36347/sjet.2024.v12i12.008 | 收到日期:2024 年 11 月 9 日 | 接受日期:2024 年 12 月 16 日 | 出版日期:2024 年 12 月 26 日 * 通讯作者:Essang Samuel Okon;Ante Jackson Efiong 亚瑟贾维斯大学数学与计算机科学系,尼日利亚阿克帕布约;Topfaith 大学数学系,尼日利亚姆克帕塔克
项目详情:计算和思考都可以看作是输入数据到答案空间的复杂非线性映射。这种映射由计算机架构或大脑训练定义,使用额外数据(“经验”)完成。还有一个重要的区别——功耗。大脑可以以非常节能的方式实现这种映射。现代基于半导体的计算硬件允许人们使用机器学习算法模拟大脑,并在一系列与人工智能相关的任务中稳步前进。然而,这种成功在能源效率方面被证明是灾难性的,使机器学习本身成为主要的(且不断增长的)能源消耗者。因此,人们开始寻找新方法来增强机器学习——那些可以摆脱这种能源效率瓶颈的方法。在这个项目中,您将探索使用自旋波(磁序材料的基本激发)构建定制硬件以实现节能的非常规计算。自旋波具有极端的非线性和适度的能量耗散,同时在 GHz 频率下具有微米到纳米的波长。这为实现微型、强大且节能的计算设备提供了独特的途径。您将结合两种本质上节能的技术范式:(i) 磁振子学(使用自旋波处理信号和数据)和 (ii) 神经形态计算(使用大规模集成系统和模拟电路以类似大脑的方式解决数据驱动的问题)。超越现有范式,您将使用纳米级手性磁振子谐振器 [1] 作为人工神经网络 [2] 的构建块。通过创建磁振子版本的储存器计算机和循环神经网络来展示网络的强大功能。该项目允许应用和/或开发一系列实际相关的技能,从分析理论到数值建模和最先进的实验。1. VV Kruglyak “手性磁振子谐振器:重新发现磁振子中的基本磁手性” Appl. Phys. Lett. 119, 200502 (2021)。2. KG Fripp 等人“非线性手性磁振子谐振器:面向磁振子神经元”Appl. Phys. Lett. 122, 172403 (2023)。