近年来,人们广泛研究了陶瓷制造过程中某些废料的回收利用,以从经济上证明与陶瓷制造相关的高昂成本是合理的,并避免这些废物被填埋[1-5]。多孔陶瓷具有许多应用领域,包括催化剂载体、熔融金属过滤器、高温隔热材料、电化学反应器中的隔板、生物反应器和骨组织工程、轻质夹层结构、水净化微孔膜和废水处理。此外,多孔陶瓷预制件还用于制备陶瓷-聚合物和陶瓷-金属复合材料[6]。陶瓷在许多应用领域的性能优于聚合物和金属竞争对手,因为它们的密度相对较低,这意味着重量轻、耐腐蚀(包括热腐蚀液体和气体)、热稳定性、化学惰性和
Quartz Flour(M400)CAO SIO 2 Al 2 A al 2 a 3 Fe 2 O 3 mgo na 2 o k 2 o k 2 o s so 3 p 2 o 5 tio 2 zno mno mno cr 2 o 3 cuo pb pb blaine透气激光衍射
组织工程对患病组织的再生和修复具有巨大的希望,使组织工程支架的发展成为对生物医学研究的极大兴趣的话题。由于它们的生物相容性和与天然细胞外基质的相似性,因此水凝胶已成为工程组织支架的主要候选者。然而,诸如孔隙率之类的水凝胶特性的精确控制仍然是一个挑战。传统技术在组织工程中表现出成功的水凝胶。但是,条件通常与直接细胞封装不相容。新兴技术已经证明了控制孔隙度和水凝胶中的微构造特征的能力,从而创建了具有与天然组织相似的结构和功能的工程组织。在这篇综述中,我们探索了控制水凝胶内孔隙度和微体系结构的各种技术,并证明了将这些技术结合的成功应用。
本研究考察了孔隙度对髋臼钢焊接件抗疲劳性的影响。进行了文献综述以确定控制含孔隙焊缝疲劳寿命的参数。开发了一个预测模型,结合这些参数来考虑疲劳的开始和扩展。使用该模型检查了四种类型的孔隙度:单孔隙度、均匀孔隙度、共线孔隙度和簇孔隙度。研究并讨论了模型对参数(板厚、应力比、残余应力、孔隙大小和孔隙类型)的敏感性。从 SL-7 负载历史数据开发了可变幅度负载历史,并用于预测实际使用寿命。这项研究的主要结论是,如果焊缝增强层保持完整,那么焊缝中的孔隙度无关紧要。如果去除增强层,孔隙度的类型和大小将控制疲劳寿命。当受到服务清单的影响时,预计焊缝在任何正常设计寿命内都不会失效。最后,结果与美国船级社的船体焊缝无损检测规则相关。从保守的角度来看,该规范是保守的。