6。Final Design .................................................................................... 14 6.1.Introduction ............................................................................ 14 6.2.字符元素.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Land Use ................................................................................ 16 6.4.社区安全............................................................................................................................................................................................................................................................................................................................................... 16 6.5。环境可持续性............................................................................................................................................................................................................................................................................................................................................................................................................................
触觉字符的中心位置必须留出至少 18 英寸 x 18 英寸的净地板空间。净地板空间的这种放置方式为标志处提供了无障碍站立空间,以便通过触摸读取。该空间的高度不得超过 80 英寸。为了安全起见,该空间必须位于任何门摆弧线之外,以达到 45° 的开启位置。这实际上设定了触觉标志与外摆门之间的最小距离,但不是绝对距离。虽然净地板空间必须位于触觉字符的中心位置,但标志可以位于门摆之外的不同距离处。
讨论点:只有数量有限的字符(例如27),钥匙对的数量有限且较小。可以使用哪些方法来增加N以拥有更大的钥匙和更多可能的对?
格式必须为 JPG、PNG、PDF(文本或扫描)或 TIFF。嵌入文本的 PDF 是最好的,因为字符提取和定位不可能出错。文件大小必须小于 50 MB。
1. 控制-显示关系................................................................................................................16 2. 刻度、指针位置和刻度编号替代方案...............................................................................26 3. 固定刻度方位角刻度盘.........................................................................................................................27 4. 形状和颜色编码示例.........................................................................................................................28 5. 圆形刻度盘显示的零位和指针移动.........................................................................................30 6. 对齐指针以便快速检查读数.........................................................................................................31 7. 弧形和直线刻度上的刻度标记、数字和指针的相对位置....................................................................................................32 8. 点阵字符和分段矩阵字符的选择....................................................................................................47 9. 数字光计数器阵列....................................................................................................................49 10. 鼓型计数器设计.........................................................................................................................52 11. 旋转旋钮分离.........................................................................................................................76 12. 钥匙锁安装标准.............................................................................................................
((1)) 一百多年前,1917 年,吉尔伯特·弗纳姆发明并申请了加法多表流密码的专利,即弗纳姆密码 [1]。弗纳姆发明并在他的专利中描述了一种电传打字机加密器,其中预先准备好的密钥保存在纸带上,逐个字符地与消息组合以对其进行加密。为了解密加密信息,必须使用相同的密钥,再次逐个字符组合,从而产生解密的消息。弗纳姆专利中描述的组合函数是 XOR 运算(布尔代数或二进制和模 2 的独家替代方案,本质上是经典逻辑控制非运算,即 CNOT 门,仅丢弃控制位并留下目标位以满足不可逆布尔代数要求),应用于用于对 Baudot 码 [2](二进制编码的早期形式)中的字符进行编码的位(原始专利中的脉冲)。虽然 Vernam 在其专利技术描述中没有明确使用术语“XOR”,但他在继电器逻辑中实现了该操作。以下示例源自 Vernam 专利的描述,用 XOR 程序取代原始的电组合函数实现电传打印设备操作的逻辑:明文字符为“A”,在 Baudot 码中编码为“+ + −−− ”,密钥字符为“B”,编码为“+ −− + +”;当对明文“+ + −−− ”和密钥“+ −− + +”进行 XOR(仅当两个输入为真和假时才返回真的逻辑运算)时,得到代码“− + − + +”,在 Baudot 中读取为“G”字符;除非知道使用的密钥是字符“B”,否则无法猜测字符“G”实际上解密为字符“A”;再次对“G”(“ − + − + +”)和“B”(“+ −− + +”)进行异或,得到鲍多码“+ + −−− ”,解密后为字符“A”。在现代广义表示中,Vernam 密码对经典信息位进行操作:0 或 1。任何经典信息都可以二进制编码为 0 和 1 的序列,这当然是绝大多数当代电子设备(包括计算机和网络)运行的信息架构。让我们考虑以下示例:一条消息“Hello”,编码(UTF8)为 M=0100100001100101011011000110110001101111(每个字符 8 位,一共 40 位)。如果使用随机(无意义)密钥,例如 K=1101010110110001011101011101 001000110100,则异或加密消息(M XOR K )将显示为 E=1001110111010100000110011011111001011011,这也没有任何意义。如果密钥是真正随机且私密的,那么没有它就无法计算原始消息是什么。只有拥有密钥 K ,才能再次将加密消息 E 与密钥 K 按位异或,以返回原始消息 M 。((2)) 在专利授予 Vernam 几年后,Joseph Mauborgne(美国陆军通信兵团上尉)对 Vernam 的发明进行了修改,将密钥改为随机密钥。这两个想法结合在一起,实现了现在著名的一次性密码本 (OTP) 经典密码。仅仅 20 年后,同样在贝尔实验室工作的 Claude Shannon 在他现在奠定基础的信息论中正式证明了一次性密码本在正确使用随机密钥实现的情况下是牢不可破的(这些证明是在 1941 年二战期间完成的,并于 1949 年解密后公布 [3])。在同一篇论文中,香农还证明了任何牢不可破的(即理论上安全的)系统都必须具有与一次性密码本基本相同的特性:密钥必须与消息一样长并且真正随机(这也意味着密钥永远不会被全部或部分重复使用并且必须保密)。美国国家安全局 (NSA) 称 Gilbert Vernam 的专利(该专利催生了一次性密码本概念)“可能是密码学历史上最重要的专利之一”[4]。最近,2011 年人们发现,一量子比特密码本实际上是在 1882 年 Frank Miller 授予 Gilbert Vernam 专利的 35 年前发明的。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。 20 世纪 70 年代,人们转向了一种名为非对称密码学(或公钥密码学)的新范式。2011 年,人们发现 One-Qubit Pad 实际上早在 1882 年 Frank Miller 向 Gilbert Vernam 颁发专利之前 35 年就已发明。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。在 20 世纪 70 年代,人们转向了一种称为非对称密码学(或公钥密码学)的新范式,2011 年,人们发现 One-Qubit Pad 实际上早在 1882 年 Frank Miller 向 Gilbert Vernam 颁发专利之前 35 年就已发明。[ ? ]。!!!!!XXX refbellovin-otp-history:Bellovin,Steven。“Frank Miller:一次性密码本的发明者”(PDF)。哥伦比亚大学。2017 年 10 月 20 日检索。((3)) 自从这些定义信息论安全经典密码学(称为私钥或对称密码学)的发现以来,基本密码学思想并没有发生太大变化。OQP 的主要问题是密钥分发(以确保通信方拥有对称密钥)。在 20 世纪 70 年代,人们转向了一种称为非对称密码学(或公钥密码学)的新范式,
词汇元素 cyber 在本文档中自然是无所不在的(出现了 700 次)。它主格地使用“网络”来指定整个领域。它还经常扮演限定形容词“网络风险”的角色。但我们最常发现该组是众多新词中的前缀。这些新词的拼写尚未通过使用来确定,我们在文献中发现,根据术语使用连字符或凝集形式,更加完善(网络风险、网络攻击)。在本文档中,我们决定系统地使用连字符,这是适合遇到的所有情况的唯一解决方案。使用将逐渐使得为每个新词选择拼写成为可能。当然,这不适用于经常使用的术语“控制论”,在这个词中,“cyber”不是前缀,而是这个词的核心。
印刷术革命 [1] 从美索不达米亚和埃及文明诞生以来,五千多年来,西方人都是手写文字的。皇帝的诏书、圣经、商业交易、私人信件,都需要一群文士、职员或僧侣的技能。然而,在韩国和中国,使用雕木块的机械印刷术已于公元 750 年传入中国。活字印刷术是用陶土制成的字符,发明于公元 11 世纪。但直到现代,中国人仍然更喜欢木版印刷。汉字由数千个表意字符组成。创建、组织和设置如此多不同字形的劳动使得从单个木块上切下单个页面变得简单得多。欧洲语言可以用不到一百个字符来书写,更适合使用活字印刷。
基于角色的对话(字符)在行业中已经变得至关重要(例如,字符),使用户能够自由自定义社交互动。但是,在社交角色中固有的各种对话方案中的普遍性和适应性仍然缺乏公共的工业解决方案。通过解剖由固有的社会概况和外部社会行为组成的全面的社交角色,我们手动收集具有不同类别和行为的特征的大规模中国语料库,并与精心设计的改进方法一起开发特征模型。广泛的实验表明,特征glm形成了最流行的开放式和封闭源LLM,并且与GPT-4相当。我们发布了本地开发和部署的数据和模型:https://github.com/thu-coai/targinglm-6b。1