摘要:可再生能源大多是间歇性的,且地理分布不均匀;因此,对开发新的储能技术的需求很高。能够吸收光、将其储存为化学能并在需要时将其释放为热能的分子被称为分子太阳能热能存储 (MOST) 或太阳能热燃料 (STF)。此类分子为太阳能存储应用提供了一种有前途的解决方案。人们已经研究了不同的分子系统用于 MOST 应用,例如降冰片二烯、偶氮苯、芪、钌衍生物、蒽和二氢蓝。多环应变分子降冰片二烯 (NBD) 可光转化为四环烷 (QC),它具有高能量存储密度和长期储存能量的潜力,因此备受关注。未取代的降冰片二烯在这方面存在一些局限性,例如太阳光谱匹配性差和量子产率低。在过去十年中,我们的团队开发并测试了具有改进特性的新型 NBD 系统。此外,我们还在实验室规模的太阳能利用、储存和释放测试设备中展示了它们的功能。本报告描述了关于如何设计 NBD/QC 系统关键特性(光化学、能量储存、热释放、稳定性和合成)的最有影响力的最新发现,以及用于太阳能捕获和热释放的测试设备示例。虽然众所周知,引入供体 - 受体基团可以实现与太阳光谱更匹配的红移吸收,但我们设法引入了分子量非常低的供体和受体基团,从而实现了前所未有的太阳光谱匹配和高能量密度。其中一些系统中的战略性空间位阻显著增加了光异构体 QC 的存储时间,而二聚体系统具有独立的能量壁垒,可改善太阳光谱匹配、延长存储时间和提高能量密度。这些发现提供了一系列可能的化学改性方法,可用于调整 NBD/QC 系统的属性并使其适用于所需的应用,这对于任何想要接受设计高效 MOST 系统挑战的人都很有用。已经建造了几种测试设备,例如,一种混合 MOST 设备,它可以同时存储太阳能和加热水。此外,我们还开发了一种用于监测催化 QC 到 NBD 转化的设备,从而可以量化显着的宏观热量产生。最后,我们测试了不同配方的聚合物复合材料,这些复合材料可以在白天吸收光线并在夜间将能量释放为热量,以备将来用于窗户涂层应用。这些实验室规模的实现具有形成性,有助于推动该领域向 MOST 系统的实际应用迈进。
1. 荷兰埃因霍温理工大学生物医学工程系化学生物学实验室 2. 荷兰埃因霍温理工大学复杂分子系统研究所 (ICMS) 3. 荷兰埃因霍温理工大学生物医学工程系计算生物学组 4. 美国华盛顿州雷德蒙德市微软公司 5. 美国华盛顿州西雅图市华盛顿大学保罗·G·艾伦计算机科学与工程学院 6. 荷兰埃因霍温理工大学化学工程与化学系自组织软物质实验室 7. 荷兰奈梅亨拉德堡德大学医学中心内科系和拉德堡德传染病中心 (RCI) 8. 英国剑桥市微软研究院 9. 英国布里斯托尔大学化学学院原始生命研究中心和有组织物质化学中心 10. 学校上海交通大学材料科学与工程系,上海,中国 11. 上海交通大学张江高等研究院(ZIAS),上海,中国。 12. 华盛顿大学电气工程系,华盛顿州西雅图,美国 13. 荷兰奈梅亨拉德堡德大学分子与材料研究所 14. 荷兰埃因霍温-瓦赫宁根-乌得勒支联盟生命技术中心 * 通讯作者 电子邮件:yuanjc@microsoft.com;tfadgreef@tue.nl 摘要 由于其寿命长和极高的信息密度,DNA 已成为一种有吸引力的档案数据存储介质。可扩展的并行随机信息访问是任何存储系统的理想特性。然而,对于基于 DNA 的存储系统,这一点还有待稳健地建立。在这里,我们开发了热约束 PCR,这是一种新方法,可以实现对分区 DNA 文件进行多路复用、重复的随机访问。我们的策略是基于将生物素功能化的寡核苷酸稳定地定位在具有温度依赖性膜通透性的微胶囊内。在低温下,微胶囊对酶、引物和扩增产物具有渗透性,而在高温下,膜塌陷可防止扩增过程中的分子串扰。我们证明,在重复随机访问和降低多重 PCR 期间的扩增偏差方面,我们的平台优于非区室化 DNA 存储。使用荧光分选,我们还通过对微胶囊进行条形码编码来展示样本汇集和数据检索。我们的热响应微胶囊技术为重复随机访问档案 DNA 文件提供了一种可扩展的、与序列无关的方法。主要虽然世界正在生成越来越多的数据,但我们存储这些信息的能力却落后了 1 。传统的长期存储介质(如硬盘或磁带)在耐用性和存储密度方面受到限制,这导致人们对小有机分子 2,3 、聚合物 4,5 以及最近的 DNA 6–8 作为分子数据载体的兴趣日益浓厚。由于其固有的信息存储能力、寿命和高信息密度,DNA 尤其成为档案数字数据存储的主要候选者 9 。用于存储信息的编码方案 7,10,11 取得了重大进展
《纳米材料和生物结构文摘》第 17 卷,第 4 期,2022 年 10 月 -12 月,第 134 页。 1431-1440 增强 BaZr 1-x Ti x O 3 无铅陶瓷的介电和储能性能 A. Ahmad a 、S. Uddin b,c 、MF Nasir a 、G. Dad c 、A. Zaman a,* 、V. Tirth d,ea 物理系,里法国际大学,伊斯兰堡 44000,巴基斯坦 b 物理系,政府学院海亚塔巴德,白沙瓦 25000,巴基斯坦 c 物理系,库尔塔巴科学与信息技术大学,白沙瓦 25000,巴基斯坦 d 机械工程系,工程学院,哈立德国王大学,阿卜哈 61421,阿西尔,沙特阿拉伯王国 e 先进材料科学研究中心(RCAMS),哈立德国王大学古拉格,阿卜哈 61413,阿西尔,邮政信箱号 9004,沙特阿拉伯王国 铁电 BaZr 1-x Ti x O 3 (0 ≤ x ≤ 8) 陶瓷组合物采用固相反应法合成。该材料在空气中以 1250 °C 煅烧。在这项工作中,我们研究了室温下 BaZr 1-x Ti x O 3 的铁电、储能和微波介电性能。XRD 谱表明 BaZr 1-x Ti x O 3 组合物具有钙钛矿结构,空间群为 Pm-3m。SEM 形貌表明晶界数量的增加导致极化增加。通过改变电场(范围)和陶瓷材料的成分,从 (PE) 环路计算出储能性能。已经观察到相对介电常数随温度的增加而增加。据报道,存储能量密度 (W rec ) 为 0.043 J/cm 3 ,而效率 (ɳ) 在室温下为 57%,在含量 (x=0.06) 下为 40 kv/cm。钛酸钡锆 (BZT) 将成为储能装置的绝佳候选材料。 (2022 年 9 月 15 日收到;2022 年 12 月 9 日接受) 关键词:BaZr 1-x Ti x O 3 钙钛矿、固态路线、铁电、储能、无铅 1. 简介如今,任何人都面临着任何类型能源的危机,他们对能源资源的需求日益增加。在未来三十年,这些需求在世界范围内应该翻一番 [1]。由于大量使用,自然资源煤炭、石油和天然气将几乎耗尽。这还会造成污染、温室效应、气溶胶、酸雨和全球变暖 [2, 3]?需要寻找可再生能源,并储存这些可再生能源,这是一个问题[4]这些可再生能源本质上都是电能,因此需要储存它[5]在过去的几十年里,双极电容器以及高能量存储密度是目前可用的储能设备中最好的选择,即电池、双极电容器、燃料电池和超级电容器[6-8]。电介质具有高能量存储(ES)材料,因为它们具有相对较大的可释放能量密度(W rec)、高效率(η),以及适当的电场击穿强度(BDS)[9]。介电电容器的能量密度可以通过方程曲线下的面积计算,Wrec = ∫ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝 𝑟𝑟 𝑝𝑝 𝑖𝑖 (1)