HDF Energy 想知道 GPA 是否愿意考虑包括 BESS 和氢气存储的混合解决方案?事实上,HDF Energy Renewstable® 概念结合了 BESS(短期存储时间)和氢气存储(长期存储),可以昼夜调度可再生电力,以利用这两种技术。此外,通货膨胀削减法案和相关的氢气生产税收抵免可能适用于关岛,这将使我们的报价更具吸引力。请注意,我们的 MWe 规模氢燃料电池于 2019 年落成,目前在马提尼克岛运行,那里与法国公用事业公司 EDF 签订了有效的 PPA。回答:请参阅上面的更改。投标包中的所有其他条款和条件应保持不变并完全有效。BEATRICE P. LIMTIACO 总经理 (A)
薪酬最高组别 13 TVöD Bund ○ 全职(每周 39 小时) ○ 固定期限合同 工作地点为德国汉诺威。 您的任务: QUEST 实验量子计量研究所是汉诺威莱布尼茨大学和不伦瑞克 PTB 的联合机构。在量子逻辑光谱研究小组中,我们致力于捕获和激光冷却的原子和分子离子的精密光谱学。捕获离子的量子控制是开发容错可编程量子计算机的最先进方法之一。基于离子阱芯片技术与微波控制相结合,将构建一个 50 量子比特的系统。这将涵盖整个系统的所有方面。较长的离子存储时间(受与背景气体分子碰撞的限制)是操作量子计算机的基本要求。 您的任务将包括:
长距离量子通信和网络需要具有高效光学接口和长存储时间的量子存储节点。我们报告了基于金刚石纳米光子腔中的硅空位中心 (SiV) 实现的集成双量子比特网络节点。我们的量子比特寄存器由充当通信量子比特的 SiV 电子自旋和充当存储量子比特的强耦合硅-29 核自旋组成,量子存储时间超过 2 秒。通过使用高度应变的 SiV,我们实现了温度高达 1.5 开尔文的电子-光子纠缠门和温度高达 4.3 开尔文的核-光子纠缠门。我们还通过使用电子自旋作为标志量子比特展示了核自旋-光子门中的高效错误检测,使该平台成为可扩展量子中继器的有希望的候选者。T
如果未来的零排放能源系统在很大程度上依赖太阳能和风力资源,则资源可用性和电力需求之间的空间和时间不匹配可能会使系统可靠性。使用39年的每小时重新分析数据(1980 - 2018年),我们分析了太阳能和风资资源满足42个国家 /地区电力需求的能力,改变了可再生生成的假设规模和混合能力以及能源存储能力。假设完美的传输和年度生成等于年度需求,但没有储能,我们发现最可靠的可再生电力系统是风重,并且满足了72 - 91%小时的电力需求(通过添加12小时的存储时间为83 - 94%)。即使在满足需求的90%的系统中,每年可能会发生数百小时的未满足需求。我们的分析有助于量化附加能量存储,需求管理或削减的功率,能源和利用率,以及区域聚集的好处。
a。20 mg小瓶:加入2.3毫升的SWFI,导致10 mg/ml padcev。b。30 mg小瓶:加入3.3毫升的SWFI,导致10 mg/ml padcev。5。慢慢旋转每个小瓶,直到内容物完全溶解。允许重构的小瓶至少定居1分钟,直到气泡消失。不要摇动小瓶。不要暴露于阳光直射。6。肠胃外药物应在溶液和容器允许时在给药前视觉检查颗粒物和变色。重构的溶液应清楚至略微乳白色,无色至浅黄色,没有可见的颗粒。用可见的颗粒或变色丢弃任何小瓶。7。基于计算的剂量量,应立即将来自小瓶的重构溶液添加到输液袋中。该产品不含防腐剂。如果不立即使用,则可以在2°C至8°C(36°F至46°F)的冷藏中储存多达24小时的小瓶。不要冻结。在推荐的存储时间之外,用重构解决方案丢弃未使用的小瓶。
可靠性:不同的概念 设计可靠性取决于组件级的可靠性规范。由于装配错误和组件不合格,生产产品的可靠性可能与设计可靠性不同。生产产品的可靠性是产品的“固有”可靠性。产品需要运输到市场,通常还要储存一段时间,然后才能出售。一台设备的销售可靠性取决于机械负载(运输过程中的振动引起)、冲击负载(处理不当引起)、储存时间和储存环境(如温度、湿度等)。因此,销售可靠性可能与固有可靠性不同。产品售出后,可以再储存一段时间(如果该设备作为备用),也可以立即投入使用。现场设备可靠性性能取决于存储时间和环境以及其他几个操作因素,如使用强度(决定设备的负载 - 电气、机械、热、化学)、使用模式(连续使用还是间歇使用)和操作环境(如温度、湿度、振动、污染等),在某些情况下还取决于操作员。操作中的可靠性性能通常称为“现场可靠性”。图 1(来自 MURTHY 等,2007d)显示了这些不同的可靠性概念如何依次关联以及影响它们的因素。
电力公用事业:许多公用事业公司已宣布了到 2050 年或更早实现净零排放的脱碳目标。LDES 技术可以成为实现这些目标的重要工具,作为可调度能源的来源,以匹配具有高渗透率可变可再生能源的发电组合。3 有组织的市场中的价格信号激励能源存储资源将能源从价格相对较低的时期(供应过剩时期)转移到价格相对较高的时期(供应紧张时期)。这可以包括在日内、两天之间甚至跨季节转移能源。4 市场机制仍在开发中,以便在更成熟的四小时存储时间之外充分补偿 LDES 的这些服务。同时,LDES 可以通过一些现有的电力市场结构提供价值。5 具有足够容量和持续时间的存储资源有可能发挥峰值电厂的作用。例如,能够提供超过 100 小时能源的 LDES 资源可以在电网最具挑战性的时期提供低碳稳定电力。 LDES 还可以提供各种平衡和储备服务,以最大限度地减少客户的服务中断。
第二次量子革命带来了量子互联网的希望。随着第一批量子网络硬件原型接近完成,新的挑战也随之而来。功能网络不仅仅是物理硬件,可扩展量子网络系统的研究还处于起步阶段。在本文中,我们提出了一种量子网络协议,旨在实现端到端量子通信,以应对量子力学带来的新基础和技术挑战。我们开发了一种量子数据平面协议,可实现端到端量子通信,并可作为更复杂服务的构建块。近期量子技术面临的一个关键挑战是退相干——量子信息的逐渐衰减——这对存储时间施加了极其严格的限制。我们的协议旨在应对较短的量子内存寿命。我们使用量子网络模拟器演示了这一点,并表明该协议即使在退相干导致严重损失的情况下也能提供服务。最后,我们得出结论,该协议在当今正在开发的资源极其有限的硬件上仍然有效,强调了这项工作的及时性。
1 Hertie School,德国柏林2 QVIST COUNSTING LIMITED,英国伦敦 *通讯作者:ruhnau@hertie-school.org摘要。 在100%可再生电力系统的背景下,风和太阳能资源持续稀缺的延长时期受到了学术和政治的关注。 本文探讨了这种稀缺时期与能源储能需求的关系。 为此,我们基于使用35年的小时时间序列数据的德语100%可再生案例研究的时间序列分析与系统成本优化模型中的时间序列分析的对比。 我们的时间序列分析支持以前的发现,即持续稀少供应的时期持续不超过两周,但我们发现最大的能量不足发生在更长的9周期间。 这是因为多个稀缺时期可以互相跟随。 在考虑存储损失和充电限制时,定义存储要求的周期延长了多达12周。 在这个较长时期,与最稀有的两周的能量不足相比,成本优势的存储容量大约要大三倍。 为生物能源示例添加其他灵活性来源,定义存储需求的时期持续时间延长了一年以上。 在基于单年而不是多年时间序列优化系统成本时,我们发现存储需求的青年际差异很大,最极端的一年的存储时间是平均年份的两倍以上。1 Hertie School,德国柏林2 QVIST COUNSTING LIMITED,英国伦敦 *通讯作者:ruhnau@hertie-school.org摘要。在100%可再生电力系统的背景下,风和太阳能资源持续稀缺的延长时期受到了学术和政治的关注。本文探讨了这种稀缺时期与能源储能需求的关系。为此,我们基于使用35年的小时时间序列数据的德语100%可再生案例研究的时间序列分析与系统成本优化模型中的时间序列分析的对比。我们的时间序列分析支持以前的发现,即持续稀少供应的时期持续不超过两周,但我们发现最大的能量不足发生在更长的9周期间。这是因为多个稀缺时期可以互相跟随。在考虑存储损失和充电限制时,定义存储要求的周期延长了多达12周。在这个较长时期,与最稀有的两周的能量不足相比,成本优势的存储容量大约要大三倍。为生物能源示例添加其他灵活性来源,定义存储需求的时期持续时间延长了一年以上。在基于单年而不是多年时间序列优化系统成本时,我们发现存储需求的青年际差异很大,最极端的一年的存储时间是平均年份的两倍以上。我们得出的结论是,专注于短期的极端事件或单一年份可能会导致对存储要求和100%可再生系统的成本的低估。