癌症治疗的最重要和常见方法是化学疗法,手术和放疗。但是这些提到的方法具有重要的副作用,例如无法忍受的毒性,对癌细胞的药物访问有限,异质药物和生长癌细胞的生物抗性,从而降低了成功率。因此,迫切需要使用药物输送系统和靶向治疗来改善治疗过程。单壁碳纳米管的使用是一种靶向癌症治疗。该项目的目的是研究抗癌药物作为单壁碳纳米管的抗癌药物的相互作用潜力的不同变量。通过M06/6-311+G*级别中的基本叠加误差(BSSE)评估并通过基集叠加误差(BSSE)进行评估和校正。评估的结果表明,通过增加溶剂的介电常数,粘结能减少。因此,稳定性增加。然后,在M06/6-311+G*水平上,SWCNT与Capecitabine药物相互作用的评估结果表明这种吸收是自发的。根据AIM分析的结果,N1 -C87相互作用键具有部分共价性质。过渡电子可以从供体原子(Capecitabine中的唯一氮对)迁移到受体原子的σ^* - 轨道(SWCNT碳原子的σ^*轨道),如NBO分析所观察到的,并报告。蒙特卡洛模拟结果表明,由于抗癌药与SWCNT之间的相互作用,水溶剂中的溶剂化自由能变得更加阴性。所产生的相互作用复合物的总能量比SWCNT的总能量更为负,这表明两种方法彼此相对应。
摘要:有形文化遗产面临多种环境风险因素,这些因素会影响其完整性和文化功能。这些因素包括物理、化学和微生物因素。真菌生物腐蚀会对材料造成美观和结构损坏,如果存放不当或发生洪水或漏水等事故,这种影响会加剧。同时,不同真菌孢子的空气污染会增加文物安全的风险因素。追踪空气生物污染具有双重意义:保护博物馆工作人员的健康免受有害生物气溶胶的侵害,并控制能够分解博物馆藏品的生物污染物的存在。本文将介绍用于检测罗马尼亚民族志博物馆、储藏室以及展览室空气中真菌种类的方法。初步结果显示,已知具有纤维素分解活性的真菌属占主导地位,例如曲霉菌、青霉菌和枝孢霉菌,并且温度和湿度值与空气中可培养真菌物种的浓度和类型之间存在直接相关性。此外,用于分离空气真菌物种的培养基被证明是分离方法中的一个重要因素。
来源:提供的数据代表了美国人口普查局 2019 年、2020 年和 2021 年县商业模式、美国经济分析局、美国能源部、美属维尔京群岛经济研究局年度旅游指标以及 NOAA 合同 #EA-133C-16-CQ-0045 下收集的数据中的最佳可用数据。由于其他海洋经济部门的数据被抑制,每个部门的指标总和将不等于海洋经济总量。进一步的不一致也可能是由于抑制造成的。就业数据不包括自雇工人。
槲寄生在法国赤松林中发生率的上升是阿尔卑斯山赤松林保护和可持续性面临的主要问题之一。与天然林相比,人工林更容易受到生物入侵。研究区域覆盖着针叶林(低海拔地区主要是法国赤松),法国西南部阿尔卑斯山的一部分黑森林受到半寄生虫槲寄生的严重影响。由于槲寄生的发生,研究区域的法国赤松树枝肿胀、树体弯曲;树木死亡率惊人。为了管理和尽量减少生物入侵,检测和绘图在森林保护中起着关键作用。通过遥感技术检测和绘制生物入侵地图是研究人员要克服的挑战。高分辨率 (VHR) 卫星图像和航空图像的进步以及遥感和 GIS 技术的应用,已在森林健康状况的检测、绘图和监测方面显示出良好的效果。在本研究中,数字航空正射影像(分辨率 15 厘米)和 VHR 卫星图像 WorldView-2(全色 0.5m 和多光谱 2m)用于通过基于像素的最大似然分类器检测和绘制欧洲松林中槲寄生的存在。在 WorldView-2 光学影像上,成功绘制了欧洲松林的分布,精度较高(96%),kappa 系数为 0.84。存在槲寄生的欧洲赤松在所有波段的光谱反射率都较低,但 WorldView-2 的 NIR1、NIR2 和红边对槲寄生的区分能力更强。同样,植被指数 NDVI 85(红光和 NIR2 的波段组合)也有区分槲寄生的潜力。此外,结果表明,槲寄生与海拔呈负相关和显著相关(r=-0.5135;p<0.01),而与欧洲赤松的 DBH 呈显著正相关(r=0.52;p<0.01)。通过使用海拔和 DBH 建立了弱但统计显著的多元回归和逻辑回归,以模拟欧洲赤松树中槲寄生的发生率。通过应用基于像素的最大似然算法对松林中的槲寄生进行检测,在 WorldView-2 图像中实现了总体分类准确率 (86%) 和 kappa 系数 (0.52)。2m 分辨率 WV-2 与 0.15cm 分辨率正射影像分类输出的比较表明,空间分辨率较低但光谱分辨率较高的 WV-2 影像的分类精度较高(86%)。这项研究揭示了高分辨率光学影像在检测和绘制树木侵染地图方面具有巨大潜力。检测和绘制此类生物入侵地图可为更好地管理森林提供有用信息。关键词:检测和绘图、欧洲赤松、槲寄生、光学影像、生物入侵
作物。对 87 种芒属植物基因型的初步筛选确定了胚性愈伤组织形成和再生的显著差异,而另一子集则显示出通过农杆菌或基因枪转化的能力差异——所有这些因素都可能影响基因编辑效率。针对五种基因型开发了优化程序,其中包括一种 Msi (2x)、两种 Msa (2x 和 4x) 和一种 Mxg (3x)。设计了一种多步骤筛选方法来设计能够成功靶向基因同源物的 gRNA,有利于靶向古异源多倍体芒属植物中的基因。在玉米中靶向以通过 CRISPR/Cas9 产生突变体的视觉标记基因 lw1 [36, 37, 38] 被选为芒属植物的靶向基因。编辑后的 lw1 中的叶子表型(淡绿色/黄色、条纹、白色)是一个引人注目的视觉标记
亲爱的编辑,有记录的最极端的叶绿体 RNA 编辑例子之一来自无籽维管植物卷柏(石松门),其中发现了惊人的 3494 个胞嘧啶到尿嘧啶的编辑事件(Oldenkott 等人,2014 年)。转录后叶绿体编辑在其他卷柏属物种中是否同样普遍?在这里,我研究了 Selaginella kraussiana 和 Selaginella lepidophylla 的整个质体基因组 RNA 编辑谱,并报告了编辑位点的数量和位置在卷柏质体基因组中可能存在极大差异,其程度目前在任何其他光合作用属中都是无与伦比的。通过将 S. kraussiana(GenBank 登录号 SRR2045379 – 82)和 S. lepidophylla(SRR6345606 – 15)的公开 Illumina RNA 测序 (RNA-seq) 读段映射到这两种石松的各自叶绿体基因组序列上,确定了 RNA 编辑位点(补充材料和方法;Mower 等人,2019 年)。对于每个物种,RNA 和质体基因组测序数据来自同一栽培品种(和实验室;Ge 等人,2016 年;VanBuren 等人,2018 年),大大降低了将样本之间的多态性误认为编辑事件的可能性。RNA-seq 读段的映射几乎完全覆盖(98%)参考叶绿体基因组,包括所有基因。质体基因组的平均覆盖率超过 500 3 ,为识别编辑位点提供了可靠的比对,这些位点仅在覆盖率 5 3 和读取支持率 25% 的区域中被表征(补充材料和方法);因此,请记住,本研究未记录编辑效率低( ,25%)的位点。在 S. kraussiana 和 S. lepidophylla 叶绿体转录组中分别鉴定出 1353 个和 720 个 C 到 U 的变化(表 1;补充材料和方法)
2024 年 11 月 XX 日 准备者:美属维尔京群岛政府和维尔京群岛能源办公室 (VIEO) 摘要:自 2009 年以来,美属维尔京群岛的分布式太阳能和电池存储量迅速增长,目前总计分别达到 30.5 MW 和 52.5 MWh。随着到 2030 年实现 30% 可再生能源发电的目标,集成和控制这些分布式机组的虚拟发电厂 (VPP) 代表着一个关键解决方案。VPP 协调单个家用电池以模仿公用事业规模电池的功能,在整个地区提供分布式能源容量、负载平衡以及电压和频率调节等电网服务。这种方法通过抵消昂贵的化石燃料使用并将每日能源费用平均降低 12.3%,产生了巨大的财务和运营效益,估计每年高达 2250 万美元。VPP 还增强了电网弹性,在两台最大发电机发生故障等事件中,将未供应的能源和客户轮流停电体验减少了 79%。通过这种方式,虚拟电厂为实现美属维尔京群岛的可再生能源目标提供了一条灵活、有弹性的途径。夏威夷、波多黎各、佛蒙特州和西澳大利亚州实施虚拟电厂的经验教训突出了可以指导美属维尔京群岛实施成本效益高、有弹性且安全的能源转型战略的最佳实践。
摘要:(1)背景:抗生素耐药细菌的兴起对全球公共卫生构成了重大威胁,需要创新的解决方案。本研究探讨了在肠球菌不同物种之间抗生素抗性的背景下,群集定期间隔短的短滴体重复序列(CRISPR)的作用。(2)方法:使用CRISPRCASFINDER分析了研究中包含的肠球菌的基因组,以区分CRISPR阳性(4级CRISPR)和CRISPR阴性基因组。抗生素耐药性基因,比较分析探索了肠球菌中CRISPR存在与抗生素抗性谱之间的潜在关联。(3)结果:在肠球菌物种中发现的十个抗生素耐药基因中,只有一个EFMA基因与CRISPR-sem-semant株有着密切的关联,而其他菌株在CRISPR阳性和CRISPR阳性和CRISPR阴性肠球菌基因组之间并没有显着差异。(4)结论:这些发现表明,在CRISPR阴性肠球菌基因组中,EFMA基因可能更为普遍,并且它们可能有助于更好地理解肠道抗生素耐药性基因的分子机制。
CRISPR-Cas 技术可以对植物基因组进行精确修改,有望彻底改变农业。这些技术依赖于将编辑组件递送到植物细胞中以及完全编辑的植物的再生。在无性繁殖植物(例如葡萄)中,原生质体培养是生产非嵌合和无转基因的基因组编辑植物的最佳途径之一。然而,原生质体再生植物的能力较差,阻碍了其在基因组编辑中的应用。在这里,我们报告了一种从多个葡萄品种的原生质体再生植物的有效方案。通过将原生质体封装在海藻酸钙珠中并与饲养层培养物共培养,原生质体分裂形成愈伤组织菌落,再生成胚胎并最终生成植物。该方案在酿酒葡萄和鲜食葡萄 (Vitis vinifera) 品种以及葡萄砧木和葡萄野生近缘种 Vitis arizonica 中均成功发挥作用。此外,通过用 CRISPR 质粒或核糖核蛋白 (RNP) 复合物转染原生质体,我们在三个品种和 V. arizonica 中再生了 VvPHYTOENE DESATURASE 基因经过编辑的白化植物。结果揭示了该平台在促进葡萄属物种基因组编辑方面的潜力。
