在资源受限环境(例如微控制器和AI加速器)中,对人工智能(AI)应用的需求不断增长,提出了重大挑战。在这些平台上部署深度学习模型对于将AI扩展到边缘计算,可穿戴设备和智能眼镜至关重要。但是,现有模型通常是为通用硬件设计的,导致资源约束设置的效率低下。这项研究重点是优化嵌入式系统的深度学习模型,特别关注智能眼镜应用。通过利用模型压缩,量化和神经体系结构搜索等技术,目标是在满足这些平台的严格约束时确保高性能。该研究将强调软件优化和与硬件设计人员的合作,以确保与新兴AI加速器的无缝集成。目标是开发能够在低功率设备上运行的高效,健壮和准确的模型,从而在智能眼镜中实现实时AI应用程序。这些进步将支持新颖的用例,例如凝视估计,意图识别和增强现实,提高可用性和可访问性,同时减少对云基础架构的依赖。这项研究解决了对可伸缩,可访问的AI的关键需求,
这项研究着重于开发和部署微控制器和AI加速器的小型AI模型,以在智能眼镜场景中进行眼睛跟踪任务。通过利用模型压缩,量化和轻型神经体系结构等技术,目的是创建有效的解决方案,以满足这些设备的严格计算和能量约束。该研究将优先考虑与嵌入式平台和加速器无缝集成的软件优化,从而实现实时性能。此外,该研究将纳入事件摄像机或神经形态视觉系统的使用,该系统在功率效率和高时间分辨率方面具有显着优势,使其非常适合在资源受限环境中进行眼睛跟踪应用。
2024-25呼吸道疾病季节前景伊利,宾夕法尼亚州 - 伊利县卫生部为伊利县的2024-25呼吸病毒季节提供了公共卫生数据和指导。该信息由部门的流行病学人员汇编和准备。正在进行的数据收集和监视工作,包括报告的病例,废水监测以及爆发报告,在跟踪和防止社区内呼吸道疾病的传播中发挥关键作用。疫苗疫苗接种工作正在进行,以帮助伊利县居民避免严重疾病,并避免在COVID-19,流感,流感和B以及呼吸道合胞症病毒(RSV)的情况下住院。COVID-19:截至2月1日,伊利县居民中有10.4%的居民至少收到了1剂2024-25 Covid-19-Covid-19-19。今年的疫苗接种吸收略低于去年(截至2024年2月1日)。流感:截至2月1日,伊利县居民中有23.8%接收了2024-25流感疫苗。RSV:截至2月1日,自上个赛季首次上市以来,伊利县60岁以上的伊利县居民中有19.2%的居民接受了RSV疫苗。RSV疫苗目前不是年度疫苗。
代谢分析是在一月份与牛群分组的代表进行的,评估了牛群的营养和健康状况。一项重要的资产,可让您深入了解母牛的蛋白质,能量和矿物质状态。Rhyd y Gofaint的结果表现出极好的痕量矿物水平,但是,哺乳期中有一些可疑的能量平衡结果。因此,使用针pil刺血样品10-20天,对酮水平进行了进一步的监测,以深入研究结果。这有助于识别和治疗几例亚临床酮症病例,可能会增强受影响的牛的产量,健康和生育能力。早期检测高风险母牛的关键要素。
Morelle Raïsa Djiaala Tagne、Mireille Ebiane Nougang、Edith Brunelle Mouafo Tamnou、Awawou Manouore Njoya、Pierrette Ngo Bahebeck、Samuel Davy Baleng、Paul Aain Nana、Yves Yogne Poutoum、Genevieve Bricheux、Claire Stéphane Metsopkeng、Télesphore Sime-Ngando 和 Moïse Nola DOI: https://doi.org/10.22271/micro.2023.v4.i1b.72 摘要 这项研究评估了在雅温得(喀麦隆)的井和雨水样本中分离的蜡状芽孢杆菌、苏云金芽孢杆菌和枯草芽孢杆菌菌株的抗生素敏感性。在长旱季 (LDS)、短旱季 (SDS)、长雨季 (LRS) 和短雨季 (SRS) 期间每月收集水井水样,对于雨水则在 LRS 和 SRS 期间收集。考虑的抗生素包括亚胺培南、阿米卡星、庆大霉素、环丙沙星、氧氟沙星、磺胺甲唑和四环素。对于来自地下水的菌株,对于苏云金芽孢杆菌,抗生素抑制直径从 9.13 毫米(SDS 期间的磺胺甲唑)到 32.78 毫米(LDS 期间的亚胺培南),对于蜡状芽孢杆菌,抗生素抑制直径从 8.2 毫米(SDS 期间的磺胺甲唑)到 35.25 毫米(LDS 期间的亚胺培南)不等,对于枯草芽孢杆菌,抗生素抑制直径从 5.05 毫米(LRS 期间的氧氟沙星)到 29.25 毫米(LDS 期间的亚胺培南)。雨水中的芽孢杆菌直径从 4.55 mm(LRS 期间使用磺胺甲唑)到 25.65mm(LRS 期间使用亚胺培南),蜡状芽孢杆菌从 2.13 mm(LRS 期间使用亚胺培南)到 20.05mm(SRS 期间使用亚胺培南),枯草芽孢杆菌从 5.03 mm(SRS 期间使用庆大霉素)到 25.15mm(SRS 期间使用四环素)。LRS 期间分离出的芽孢杆菌菌株对大多数抗生素具有多重耐药性。大多数抗生素的抑菌直径在不同季节之间存在显著差异(p<0.05)。关键词:抗生素敏感性,芽孢杆菌菌株,地下水和雨水,抑菌直径变化 1. 引言 不同国家的水消耗量差异很大。这取决于其发展、人口和资源本身。当水被污染时,水会成为许多疾病的主要传播媒介之一,而这些疾病是导致人类或动物大规模流行病的原因。污染源包括河流、水体、咸水以及雨水、露水、雪和极地冰。每种环境中的水都可能被化学物质和微生物污染,包括原生动物、病毒和细菌 [1] 。水环境中有各种细菌科。这些微生物具有各种特性。通常用于识别细菌微生物的一些特性是革兰氏染色细胞壁和产孢特性。芽孢杆菌属细菌被称为革兰氏阳性菌和产孢菌。它们存在于空气、水中或土壤中 [2] 。对于人类来说,一些芽孢杆菌种是病原体或机会性病原体,而另一些只是共生菌。然而,细菌的共生特性取决于其环境中的几个因素 [3] 。除了食物中毒外,这些细菌会引起局部和全身感染,有时会导致患者死亡 [4, 5] 。多年来,人们也认识到生物颗粒对大气过程的潜在相关性 [6, 7] 。空气中的生物颗粒作为一个整体也被称为生物气溶胶。它们可以包括细菌细胞和细胞碎片、真菌孢子和真菌
在数值气候模型中代表过程的摘要技术进步导致了熟练的预测,因此,这可以提高水文预测的信心和水力气候服务的可用性。鉴于许多与水相关的利益相关者都受到季节性水文变化的影响,因此有必要通过更好地理解影响水文可预测性的驱动因素来管理其优势。在这里,我们分析了欧洲大约35,400个盆地的流流量的季节性预测,这些预测在气候,规模和水文制度方面是强大的梯度。然后,我们将季节性体积误差与各种生理学 - 氢化气候描述符和气象偏见联系起来,以确定控制可预测性的关键驱动因素。欧洲的流流量已经很好地预测,但具有一些地理和季节性变异性;但是,可预测性随着提前时间的增加而恶化,尤其是在冬季。尽管如此,我们表明预测质量与一组描述符相关,这些描述符因初始化月份而异。季节性流量体积的预测质量在很大程度上取决于盆地的水文状态,相对较高的盆地的可预测性有限。相反,降雪和/或基本流量以较长的衰退为主的区域显示出高流动性可预测性。最后,气候学和降水预测偏差也与流流的可预测性有关,强调了开发稳健偏见调整方法的重要性。总体而言,这项调查表明,可以根据局部氢化气候条件的先验了解,可以将季节流的可预测性聚类,因此可以进行区域化。普通语言摘要的水文信息对现有的决策 - 特别是对受气候变化片段影响的人的巨大价值,他们将从更好地理解和管理与气候相关的风险中受益。目前,对控制季节流预测质量的因素的了解有限。我们分析了对欧洲的预测,并将其可预测性与流域描述源和气象偏见联系起来。这允许沿强氢气候梯度识别主要驱动器。季节性流的可预测性在地理和季节性上有所不同,在第一个领先月份中可接受的值。可预测性随着提前时间的增加而恶化,尤其是在冬季。水文状态与预测质量密切相关,迅速反应盆地显示出低值。盆地气候学和降水预测偏差也与流流的可预测性有关。
氢的生产预计将在全球范围内强劲增长,也是欧洲和意大利战略计划的一部分。氢的生产在高度多样化的能源方面是战略性的。实际上,还可以通过利用可再生能源和国家电网来广泛生产氢。对于脱碳至关重要,这些部门被确定为“难以减弱”,并且是产生电子燃料的基础。从具有较高的可再生能源能力的角度来看,可以考虑具有可以利用的能量盈余来产生氢以存储的能量。事实证明,它是季节性存储的最佳能源载体。电解液对于从电力开始的氢产生至关重要。研究和开发的重点是改善电解室的最新面积,以具有以下特征:
季节性疫苗接种计划更新 尊敬的药剂师, 感谢您参加秋冬季 COVID-19 和季节性流感活动。季节性流感疫苗接种活动将持续到 2025 年 4 月底。对 2-17 岁儿童的鼻腔流感疫苗接种将在 LAIV 产品过期时结束。剩余的在有效期内的 LAIV 疫苗将于 2025 年 2 月 24 日过期。任何在此之后要求接种流感疫苗的高危人群儿童都可以注射疫苗。预计 COVID-19 秋冬季计划将于 2025 年 2 月中旬结束,具体取决于 NIAC 关于是否建议开展 COVID-19 春季加强接种活动的建议。 记录疫苗 必须将所有接种的疫苗准确、及时地记录到 IT 系统中,数据从该系统输入 COVAX,以便临床疫苗接种记录保持最新。请确保所有患者的疫苗接种记录都已输入 PharmaVax。移除 COVID-19 疫苗类型 为了确保 PharmaVax 上的疫苗类型和批次是最新的,不再使用的疫苗产品会定期移除。这有助于改进工作流程并简化系统上的 COVID-19 疫苗产品。以下 COVID-19 产品自 2024 年 9 月起未分发,并将于 2025 年 3 月 31 日起从 PharmaVax 中移除
