由于电池容量有限,能源效率有效的导航构成了电动汽车的重要挑战。我们采用贝叶斯的方法来对路段的能源消耗进行建模,以进行有效的导航。为了学习模型参数,我们开发了一个在线学习框架,并研究了几种探索策略,例如汤普森采样和上限限制。然后,我们将我们的在线学习框架扩展到多代理设置,在该设置中,多个车辆可适应和学习能量模型的参数。通过分析批处理反馈下的算法,我们分析了汤普森采样,并在单位代理和多代理设置中建立了严格的遗憾界限。最后,我们通过在几个现实世界的城市路网络上进行实验来演示方法的性能。
在量子计算机上可验证的较低复杂度。然而,量子电路 (QC) 的 QIP 体现仍不清楚,更不用说对 QIP 电路的 (彻底) 评估,特别是在 NISQ 时代的实际环境中,通过混合量子经典管道将 QIP 应用于 ML。在本文中,我们从头开始精心设计 QIP 电路,其复杂性与理论复杂性一致。为了使模拟在经典计算机上易于处理,特别是当它集成在基于梯度的混合 ML 管道中时,我们进一步设计了一种高效的模拟方案,直接模拟输出状态。实验表明,与之前的电路模拟器相比,该方案将模拟速度提高了 68k 倍以上。这使我们能够对典型的机器学习任务进行实证评估,从通过神经网络的监督和自监督学习到 K 均值聚类。结果表明,在量子比特足够的情况下,典型量子机制带来的计算误差一般不会对最终的数值结果产生太大影响。然而,某些任务(例如 K-Means 中的排序)可能对量子噪声更加敏感。
● 在使用教学设计原则和成人学习理论规划和构建新学习产品、处理 SME 内容和管理端到端课程开发方面拥有丰富的经验。 ● 出色的研究、写作和编辑技能,包括能够将复杂的信息(如法律术语)转化为适合广泛受众的通俗易懂的英语,符合组织的品牌、语气、EDI 和可访问性指南。 ● 了解可访问性和 EDI 标准,以创建包容性学习材料。 ● 可展示的项目管理技能,能够领导项目、将课程内容与框架进行映射、准确估计时间表、同时管理多个项目并按时完成任务。 ● 强大的沟通和协作技能,能够与同事和跨职能团队有效合作。 ● 随时了解 L&D 领域的新兴趋势、技术和工具。探索并推荐创新方法,以提高学习材料的有效性和参与度。 ● 能够快速适应新技术和工具。
人工智能和机器学习 (AIML) 辅修课程是一个包含三门课程的辅修课程。它对所有 VSB 学生开放,课程包括构建原型智能系统、自然语言处理、专家系统、监督和无监督学习、机器人技术以及构成广泛 AI 领域的其他领域。
抽象机器学习(ML)实验管理工具在构建智能软件系统时支持ML从业人员和软件工程师。通过管理大量ML实验,包括许多不同的ML资产,它们不仅促进了工程师的ML模型和支持ML的系统,而且还可以管理其演变,例如,在模型性能漂移时将系统行为追溯到具体实验。但是,尽管ML实验管理工具越来越流行,但对它们在实践中的有效性以及实际的好处和挑战知之甚少。我们介绍了实验管理工具及其提供给用户的支持的混合方法。首先,我们对81名ML从业者的调查试图确定ML实验管理和现有工具景观的好处和挑战。第二,对15名学生开发人员进行了对照实验,研究了ML实验管理工具的有效性。我们了解到,有70%的调查受访者使用专用工具进行了ML实验,而在不使用此类工具的人中,有52%的人不知道实验管理工具或其好处。受控实验表明,实验管理工具为用户提供了有价值的支持,以系统地跟踪和检索ML资产。使用ML实验管理工具降低了错误率和提高的完成率。通过介绍用户对实验管理工具的看法以及该领域的第一个受控实验,我们希望我们的结果在实践中促进了这些工具的采用,以及他们指导工具建设者和研究人员改善工具景观的整体。
摘要 随着人工智能 (AI) 技术的进步,它将不可避免地给课堂实践带来许多变化。然而,教育领域的人工智能研究与教学观点或教学方法的联系较弱,特别是在 K-12 教育领域。人工智能技术可能使有上进心和先进的学生受益。需要了解教师在课堂上使用人工智能技术调解和支持学生学习方面所起的作用。本研究使用自我决定理论作为支撑框架,调查教师支持如何调节学生专业知识对需求满足和使用人工智能技术学习的内在动机的影响。这项实验研究涉及 123 名 10 年级学生,并在实验中使用聊天机器人作为基于人工智能的技术。分析表明,使用聊天机器人学习的内在动机和能力取决于教师支持和学生专业知识(即自我调节学习和数字素养),教师支持更好地满足了关联性需求,而不太满足自主性需求。研究结果完善了我们对自我决定理论应用的理解,并扩展了人工智能应用和教学实践的教学和设计考虑。
摘要:心血管心律失常确实是全球最普遍的心脏问题之一。在本文中,主要目标是开发和评估自动分类系统。该系统采用了电解图(ECG)数据的全面数据库,特别着重于改善少数心律失常类别的检测。在这项研究中,重点是在心律不齐检测的背景下研究三种不同监督机器学习模型的性能。这些模型包括支持向量机(SVM),逻辑回归(LR)和随机森林(RF)。使用真正的患者心电图(ECG)记录进行了分析,这在临床环境中是一种更现实的情况,在临床环境中,ECG数据来自各种患者。该研究根据四个重要指标评估了模型的性能:准确性,精度,召回和F1得分。彻底实验后,结果强调,随机森林(RF)分类器在实验中使用的所有指标中的其他方法都优于其他方法。该分类器的精度令人印象深刻,表明它在准确检测不同患者收集的各种心电图信号中的心律不齐方面有效。
运用数学游戏应用进行数字化游戏化学习对四年级学生计算能力的影响 刘濝濢 -Bei LIU a* , Alex Wing Cheung TSE b* 香港大学教育学院,香港 a* u3598295@connect.hku.hk; b* awctse@hku.hk 摘要:计算能力是小学数学学习中必不可少的素质,事实证明,通过游戏化应用进行学习可以提高学生的数学学习成绩,从而有利于发展他们的计算能力。计算能力是数学核心技能之一,可以通过不断的计算练习来提高。然而,目前关于在小学使用运用数学游戏应用进行数字化游戏化学习 (DGBL) 对发展学生计算能力的影响的研究还很少。因此,本项准实验研究共有78名学生参与,旨在评估通过iPad进行DGBL与数学游戏应用“口算英雄”对中国大陆一所主流学校四年级学生计算能力的可能影响。实验班将数学游戏应用融入为期四周的课堂活动中,实验组和对照组均采用标准化计算能力测试:Abilita diCalcoloz计算能力-记忆与训练第6-11组(Cornoldi等,2002)进行前测和后测。采用方差分析的数据分析结果显示,在数学课堂上使用iPad上的数学游戏应用学习时,学生的计算能力存在显著差异,四年级实验组(n=40)与对照组(n=38)的整体计算能力存在显著差异。换句话说,我们发现,在使用数学游戏应用进行计算练习后,学生更有可能获得更好的计算能力,尤其体现在计算速度更快、错误率更低方面。然而,在数值知识方面没有显著差异,使用这种数学游戏应用程序学习可能不会导致获得更多的数学知识。这项研究为小学数学教育者和教师提供了一个现实的视角来了解使用数学游戏应用程序学习的潜力:它可以成为提高四年级学生计算能力的有效工具。该项目的第二阶段是探索研究结果背后的原因,揭示使用数学游戏应用程序进行 DGBL 的可能因素,这些因素可能会促进计算能力的某些方面。提出了将 DGBL 融入小学数学课堂的进一步建议。关键词:基于数字游戏的学习、计算能力、数学游戏 1。引言:学生的计算能力是指理解数字之间规律和相对量,并以更灵活的方式进行数字运算(加、减、乘、除)的能力(Feigenson 等,2004;Tall 和 Dehaene,1998)。计算能力对于小学阶段的数学成绩至关重要(Cowan 等,2011)。与不同领先国家的小学数学课程类似,根据中国大陆最新的课程标准,四年级学生必须掌握四种运算(加、减、乘、除),并且需要不断练习计算能力以找到更简单的解决方案(中华人民共和国教育部,2022)。学生的表现和
本文介绍了一种使用心电图 (ECG) 早期检测心脏异常的新型定制混合方法。ECG 是一种生物电信号,有助于监测心脏的电活动。它可以提供有关心脏正常和异常生理的健康信息。早期诊断心脏异常对于心脏病患者避免中风或心脏猝死至关重要。本文的主要目的是检测可能损害心脏功能的关键心跳。首先,改进的 Pan-Tompkins 算法识别特征点,然后进行心跳分割。随后,提出了一种不同的混合深度卷积神经网络 (CNN) 在标准和实时长期 ECG 数据库上进行实验。这项工作成功地对几种心跳异常进行了分类,例如室上性异位搏动 (SVE)、心室搏动 (VE)、心室内传导障碍搏动 (IVCD) 和正常搏动 (N)。所获得的分类结果显示,使用 MIT-BIH 数据库的分类准确率达到 99.28%,F 1 分数为 99.24%,而使用实时获取的数据库的分类准确率下降为 99.12%。
