摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
摘要 人工智能 (AI) 和机器学习 (ML) 正在彻底改变人类各个领域的活动,医学和传染病也未能幸免于其快速而指数级的增长。此外,可解释的 AI 和 ML 领域已变得尤为重要,并吸引了越来越多的关注。传染病已经开始受益于可解释的 AI/ML 模型。例如,它们已被用于或提议用于更好地理解旨在改善 2019 年冠状病毒病诊断和管理的复杂模型、抗菌素耐药性预测领域和量子疫苗算法中。尽管一些有关可解释性和可解释性二分法的问题仍需认真关注,但深入了解复杂的 AI/ML 模型如何得出预测或建议,对于正确应对本世纪传染病日益严峻的挑战变得越来越重要。
药物发现的每个阶段。其应用包括靶标识别、分子对接、药代动力学预测、毒性评估和加速药物筛选。这些发现的意义在于有望加快、经济高效且有针对性的药物开发。量子计算和机器学习的结合为精准医疗开辟了新领域,并有可能重塑制药业格局。本文深入探讨了 QML 在药物发现中实施的基本原理、实际案例研究和道德考虑,阐明了其彻底改变该领域和改善患者治疗效果的潜力。
本文探讨了深度学习在计算机视觉领域的关键作用。计算机视觉是一门使机器能够感知和理解视觉信息的研究,随着深度学习技术的出现,计算机视觉取得了重大进展。传统的计算机视觉方法在处理复杂的视觉任务时面临局限性,这促使人们需要先进的方法。由神经网络和卷积神经网络 (CNN) 驱动的深度学习通过提供端到端学习、特征表示和适应性彻底改变了计算机视觉。本文讨论了深度学习在计算机视觉中的各种应用,包括图像分类、对象检测、语义分割和视频分析。它还介绍了深度学习的优势,例如它能够处理大规模数据集并具有良好的泛化能力。然而,本文也探讨了挑战和局限性,包括对标记数据的需求和计算要求。本文最后强调了最近的进展和未来的方向,例如迁移学习、生成对抗网络 (GAN) 和注意力机制,强调了在这个快速发展的领域持续研究和开发的重要性。总体而言,深度学习已成为计算机视觉领域的关键工具,并有可能对各个领域和应用产生重大影响。
糖尿病足溃疡 (DFU) 是影响糖尿病患者的一种严重并发症,超过一半的 DFU 都有感染风险。在这些感染中,约 20% 需要截肢 (1、2)。这是一个值得关注的重要问题,因为因 DFU 而截肢的患者的死亡率很高,预计超过一半的患者会在五年内死亡 (3)。此外,治疗和管理 DFU 及其并发症的经济负担超过了五大癌症,仅在美国,每年的费用就超过 110 亿美元 (4)。随着糖尿病 (DM) 患病率的持续上升,DFU 预计将成为全球卫生系统的更大负担,并且可能是最昂贵的糖尿病并发症之一 (5)。尽管在确定 DFU 治疗的新疗法方面取得了显着进步,但对 DFU 的根本病因和管理的早期诊断仍然具有挑战性。 DFU 愈合受损是一种复杂的发病机制,由多种因素引起,包括糖尿病足部感染、伤口缺血、免疫系统衰竭和血糖控制不佳(6-8)。DFU 管理需要在多个时间点评估感染和缺血情况以便更好地管理,但由于其侵入性,目前这种方法受到限制。由于农村地区无法接触到 DFU 伤口中心和临床专家,这个问题更加严重。因此,临床对用于分析伤口感染和缺血检测的非侵入性工具的需求尚未得到满足,这两个关键因素是伤口愈合受损。近年来,深度学习算法在疾病的检测和诊断方面表现出巨大的潜力,特别是在医学成像、放射学和病理学方面(9-11)。这导致了深度学习图像分析作为一种辅助工具的出现,它支持临床医生进行决策,提高疾病诊断和治疗的效率和准确性(12)。深度学习在糖尿病足溃疡的分类和定位方面也显示出了良好的效果。它在缺血和感染分类方面取得了很高的准确率,分别为 87.5% 至 95.4% 和 73% 至 93.5%(13-16)。此外,研究人员在糖尿病足溃疡定位方面也取得了重大进展,平均精度 (mAP) 值在 0.5782 至 0.6940 之间,F1 分数在 0.6612 至 0.7434 之间(17、18)。尽管取得了这些进展,但其中许多工具仍处于开发的早期阶段,缺乏预测感染、缺血和其他对糖尿病足溃疡伤口管理至关重要的身体特征的自动分析能力。此外,目前的伤口分析平台依赖于专有硬件附件,例如热扫描仪(例如 Pod Metrics 的 SmartMat)、使用结构光或激光的 3D 扫描仪(例如 Ekare.ai 的 Insight 3D 和 Swift Medical 的 Ray 1),和光学相干断层扫描 (OCT) 用于可视化和量化与糖尿病足溃疡形成相关的微血管结构 ( 19 , 20 )。这些专门附件的需求可能会限制普通人群获得糖尿病足溃疡治疗的机会。为了解决这些限制,开发一种非侵入性和自动化的工具至关重要,即使在资源有限的地区,也可以全面分析伤口组织。本研究旨在
单元 – 第一线性模型多层感知器 – 向前 – 向后:反向传播误差 – 实践中的多层感知器 – 使用 MLP 的示例 – 概述 – 推导反向传播 – 径向基函数和样条 – 概念 – RBF 网络 – 维数灾难 – 插值和基函数 – 支持向量机单元 – 第三树和概率模型用树学习 – 决策树 – 构建决策树 – 分类和回归树 – 集成学习 – 提升 – 装袋 – 组合分类器的不同方法 – 概率和学习 – 数据转化为概率 – 基本统计 – 高斯混合模型 – 最近邻方法 – 无监督学习 – K 均值算法 – 矢量量化 – 自组织特征映射。单元 – IV 降维和进化模型 降维 – 线性判别分析 – 主成分分析 – 因子分析 – 独立成分分析 – 局部线性嵌入 – Isomap – 最小二乘优化 – 进化学习 – 遗传算法 – 遗传后代:- 遗传算子 – 使用遗传算法 – 强化学习 – 概述 – 迷路示例 – 马尔可夫决策过程 单元 – V 图形模型 马尔可夫链蒙特卡罗方法 – 抽样 – 提案分布 – 马尔可夫链蒙特卡罗 – 图形模型 – 贝叶斯网络 – 马尔可夫随机场 – 隐马尔可夫模型 – 跟踪方法。
如果您有兴趣致力于实现这些建议中的任何一项,欢迎您联系项目负责人 Victoria Grace Walden 博士 (v.walden@sussex.ac.uk),主题为:AI 和机器学习建议。我们热衷于跟踪报告发布后的影响,支持该领域的持续工作,也可能让您与其他对类似行动感兴趣的组织取得联系,以支持合作。
本文探讨了量子机器学习 (QML) 在药物发现中的变革潜力。QML 利用量子计算和先进的机器学习来加速候选药物的识别、预测分子相互作用和优化化合物。关键应用包括高效虚拟筛选、分子模拟和预测建模。虽然前景光明,但 QML 面临着技术挑战,需要量子专家和制药研究人员之间的合作。总之,QML 提供了一种更快、更经济的药物开发途径,有可能重塑制药行业并推动医学科学的发展。
