“ Chisinau Czu的Ion Creanga” Spu:159.942.072 doi:10.46727/c.7-8-11-2024-p224-234摘要。劳动迁移影响原籍国的家庭和社区,从而在关系动态和留下的情绪状态下产生重大变化。本文探讨了在该国仍在该国照顾未成年人的成年人的互动,在研究框架内分析压力如何影响情绪智力(人际关系和人际智力,人际关系和人际关系,理解自己的情绪,对自己的情绪,对自己的情绪的调节,对他人的情绪和其他人的情感和情感的理解)。还讨论了缓解负面影响和支持该人群情绪智力发展的可能策略。关键词:神经科学,压力,情绪智力,迁移,成人rezumat。migrația forțeieidemuncăafectează家族foreminit基liniletion din țAcest ArticolExploreazăinteracțiunea dintre dintre neuroștiInțeInteligențaemoțAdulții a ad adulții a a aumastr a a a avea a avea avea grijgrijădeMineri inteligențaemoțachionom(inteligența interapSersonAl月,iNterpersonală,nțelegerea emoțiilor proprii,reglarea emoțiilor proprior, - nțelegerea emo emoțiiilor si regorlalți si recolararea si recolararea emoțiiilor celor celorlalalalalallalalallalalallalallalallal celorlalalallalalallalalallalți。cuvinte-cheie:neuroștiință,stres,inteligenț emoțonionin,migrație,adulți还讨论了改善负面影响和支持该人群情绪智力发展的可能策略。
3 Annex ............................................................................................................................................ 13
电子废物(电子废物)是全球增长最快的废物流之一。技术进步的快速发展和电子设备的消耗量增加,导致了废弃电子设备的增加。e垃圾含有有机和无机化合物的混合物,包括塑料,金属和各种化学添加剂。有机化学在理解和管理电子废物中发现的毒理学和化学成分方面起着至关重要的作用。有机化合物,例如阻燃剂,聚合物,粘合剂和增塑剂,广泛用于电子产品中。对这些物质的适当管理对于减少与电子废物处置相关的环境和健康风险至关重要。本文探讨了有机化学在电子废物管理系统中的作用,重点是电子废物的化学组成,其环境影响以及新兴技术和创新在回收和处置中。此外,它讨论了电子垃圾中常见的有机化合物的可持续替代品。电子废物的化学组成:有机化合物的作用:电子材料中的材料:
纳米医学是利用纳米技术开发医疗诊断和治疗解决方案的科学领域。该领域出现于 20 世纪 80 年代的文献中,当时发表了第一篇涉及纳米医学应用的论文 ( 1 , 2 )。第二个重要里程碑是 20 世纪 90 年代推出前两种药物纳米医学产品 Doxil ® 和 Myocet ®,它们是携带化疗药物的脂质体。这些肿瘤学应用对于降低化疗毒性和提高疗效非常重要,从而改善了成千上万人的生活质量 ( 3 )。此外,纳米医学近期最相关的应用是 COVID mRNA 疫苗的开发,其中涉及使用脂质纳米颗粒(图 1 )。由于 RNA 序列不稳定,使用脂质纳米颗粒是保持寡核苷酸完整性的关键步骤。如果没有这些脂质纳米颗粒所提供的保护和稳定性,就不可能使用这些疫苗 (4)。事实上,由于此次疫情的重要性,并且这些疫苗已应用于数十亿人,我们可以说这是迄今为止纳米医学最具影响力的用途。此外,这些技术有可能用作其他医疗条件(如癌症和自身免疫性疾病)的新治疗平台,因为它们的其他用途正在不断研究中 (5,6)。在这样的历史背景下,我们向《肿瘤学前沿》提出了这个研究课题,旨在邀请作者发表纳米医学领域最新的科学和技术进展。近两年后,我们收到了 25 篇文章投稿,其中 10 篇被接受并收录在我们的特刊“纳米医学在癌症靶向和治疗中的应用”中。五篇原创文章、六篇评论文章和一篇系统评论文章被选中发表。在原创文章中,有一篇描述了用于封装藤黄酸的聚合物纳米颗粒,藤黄酸是一种常用于中药的植物化学化合物。作为主要结果,Kwan 等人展示了这种纳米载体对三阴性乳腺癌细胞的有效性,包括
Karin PS Langenberg A, *,Michael T. Meister A,B,1,Jette J. Bakhuizen A,C,1,Judith M. Eijde-Vermeulen Neveld A,Simone Punt A,L,Arjan Boltjes A,Freerk Van Dijk A,Eugene TP Verwiel A,Richard Volckmann F,Jayne Y. Hehir-Kwa A,Lennart A. hov。 A,C,Ronald R. De Krijger A,D,Marc HW Wijnen A,Monique L. Den Boer A,C。MichelZwaan A,Patrick Kemmeren A,G,J Jan FJ Goster,Goster,Goster FJ,Bianca,J. Molenaar A,M J. J. Molenaar A,M M Molenaar A,M M Molenaar A,M,M Molenaar A,M,M
通过去极化噪声造成的一般量子统一操作员被复制并插入量子开关过程中,以实现因果阶的叠加。制定了所得开关的量子通道的表征,以便其在探针控制量子对的关节状态下的作用。然后,对开关通道进行了特定研究,以针对嘈杂的统一操作员的相位估计的重要层次任务,并由Fisher信息(经典或量子)评估。与常规估计技术进行了比较,其中直接在一个单阶段或两个阶段的级联中直接探测了具有定义阶的一个阶段或两个阶段的级联,或者使用两个或多个量子的使用它们的几种用途。在带有无限顺序的开关通道中,报告了特定属性,对于估计有意义,而不存在常规技术。表明,尽管它从未直接与统一相互作用,但仍可以单独测量它以进行有效的估计,同时丢弃与统一相互作用的探针Qubit。此外,对控制Qubit的测量还可以在常规估计变得不那么有效的情况下,在很难的条件下保持有效估计的可能性,例如,在不构成的输入探针或盲目情况下,当单位轴的轴时是盲目的情况。,即使输入探针倾向于与单一轴的轴或完全去极化的输入探针保持一致,在这些条件下,通过测量控制量轴的效率估计仍然是可能的,而在这些条件下,常规估计变得无效。还分析了开关通道的探针值的测量,并证明为相位估计增加了有用的功能。结果有助于对开关量子通道的性质和能力进行持续的识别和分析,并具有无限的订单,以进行信息处理,并发现了量子估计和Qubit Metrology的新可能性。
摘要 分子病理学是病理学的重要组成部分,它补充了传统的形态学工具,以便获得正确的综合诊断,并适当评估预后和预测治疗反应,尤其是在癌症方面。人们对欧洲某些地区的分子病理学状况感到担忧,即病理学家在评估癌症体细胞基因组变异方面发挥的核心作用。在一些国家,有人试图让其他实验室医学专家对癌症体细胞变异进行分子分析,尤其是现在新一代测序 (NGS) 已纳入临床实践。在这种情况下,病理学家可能只扮演“组织提供者”的角色,而其他专家可能在分子分析方面发挥主导作用。遗传学家和实验室医学专家拥有对遗传性疾病(包括家族性癌症)中的种系变异进行遗传分析的所有背景和技能。然而,对癌症体细胞变异的解释属于病理学的特定科学领域。病理学家对于保证结果的质量至关重要,原因如下:(1)应在适当的形态学背景下解释已识别的分子改变,因为大多数分子改变都是特定于特定背景的;(2)必须考虑分析前的问题;(3)检查待分析样本中肿瘤细胞的比例至关重要,应监测炎性浸润和坏死的存在;4)病理学家的作用对于选择最合适的方法和控制在综合诊断背景下提供分子结果的周转时间至关重要。显然,医院有可能拥有用于进行序列分析的 NGS 核心设施,这些设施对其他专业(微生物学家、遗传学家)开放,但在这种情况下,病理学家也应该在评估癌症体细胞改变方面发挥主导作用。在本文中,我们强调了在形态学背景下解释肿瘤体细胞分子改变的重要性。在欧洲病理学会的立场文件中,我们强烈支持病理学部门在分析和解释癌症体细胞分子改变过程中发挥核心作用。
几十年来,遗传学与癌症之间的相互作用一直是研究的焦点,从而对驱动肿瘤发生的分子机制有了深刻的理解。在这篇全面的评论文章中,我们探讨了癌症的遗传基础,涵盖了导致致癌转化的各种改变。从致癌基因到肿瘤抑制基因,从点突变到染色体重排,我们深入研究了癌症的分子特征及其对诊断、治疗和预防的影响。利用基因组技术的最新进展,我们讨论了下一代测序、单细胞测序和计算建模在解开癌症遗传学复杂性方面的作用。此外,我们研究了癌症遗传易感性的临床意义,强调了基因检测和咨询在癌症风险评估和管理中的重要性。通过探索肿瘤异质性、克隆进化和治疗耐药性,我们强调了精准肿瘤学的挑战和机遇。最后,我们讨论了癌症遗传学研究的未来方向,包括精准预防策略和伦理考虑。
基因组肾脏病学是一个新兴领域,它将基因组学与肾脏病学相结合,彻底改变了肾脏疾病的诊断、治疗和管理。通过研究影响肾脏功能的遗传因素,研究人员和临床医生旨在发现新的治疗靶点,提高诊断精度,并为肾脏相关疾病患者制定个性化治疗计划。肾脏疾病,包括慢性肾脏病 (CKD)、糖尿病肾病和多囊肾病 (PKD),非常复杂,通常与会影响疾病发作、进展和治疗反应的基因变异有关。基因组肾脏病学利用基因组技术的力量来探索基因突变和变异如何导致这些疾病,为个性化治疗方案提供了光明的未来。人类基因组是生命的蓝图,包含数百万条信息,有助于解释肾脏功能和功能障碍背后的生物过程 [1]。
该建筑占地 250,000 平方英尺,包括湿实验室、办公室和活动空间。4MLK 将容纳韦克斯福德的总部、初创企业和风险投资办公室。
