它是如何工作的?采用 ActivePure 技术的装置通过 ActivePure 的专利蜂窝状矩阵吸收空气中的游离氧气和水分子。该技术会产生强大的氧化剂,称为 ActivePure 分子,然后将其释放回房间,在那里寻找并摧毁 DNA 和 RNA 病毒,包括 SARS-CoV-2(新型冠状病毒)、猪流感 (H1N1)、禽流感 (H5N8)、甲型肝炎 (HAV) 和 MS2 噬菌体,无论它们大小,在表面和空气中。安全。经过验证。有效。认证 • 24/7/365 持续消毒 • 价格实惠 • 快速安静地工作 • 可在有人的空间安全使用 • 实时工作
任何化学家都会告诉您,仅仅是因为两个元素在周期表中彼此邻居,这并不意味着它们具有相似的属性。镍和铜是我们的邻居。,但这对是一个奇怪的,因为这两种金属中的电子具有一个相同的特征,称为费米表面,这应该使材料具有相同的电子特性。铜一直是室温超导性的高度追捧的特征 - 某些材料具有零电阻的电动性能的能力 - 因此许多物理学家认为,基于镍的材料可能是下一步最佳的地方。第531页,朱等人。1在压力下,在镍基于周围的高压率的700,000倍的压力下提供了超导性的证据,并且温度比室温低10倍。超导性是在一个世纪前在水星中发现的,该汞几乎被冷却至绝对零2。冷却至相似的温度时,大量金属及其合金显示出超色调。但是,为了使超导性真正有用 - 例如,在较高的温度下,必须在较高的温度下实现低损耗的功率传播。1986年报道了第一个“高温”超导体,该材料后来被确定为La 2-X Ba X Cuo 4(La,Lanthanum; Ba; Ba,ba,barium; cu,cu; o,oxygen; oxygen;
摘要背景。手术切除是治疗大型或有症状的脑转移瘤 (BM) 患者的标准方法。尽管辅助立体定向放射治疗后局部控制得到改善,但局部失败 (LF) 的风险仍然存在。因此,我们旨在开发并外部验证一种基于治疗前放射组学的预测工具,以识别高 LF 风险的患者。方法。数据来自 BM 切除腔立体定向放射治疗多中心分析 (AURORA) 回顾性研究(训练队列:来自 2 个中心的 253 名患者;外部测试队列:来自 5 个中心的 99 名患者)。从增强 BM(T1-CE MRI 序列)和周围水肿(T2-FLAIR 序列)中提取放射组学特征。比较了不同的放射组学和临床特征组合。最终模型在整个训练队列上进行训练,使用先前通过内部 5 倍交叉验证确定的最佳参数集,并在外部测试集上进行测试。结果。使用放射学和临床特征组合训练的弹性网络回归模型在外部测试中表现最佳,一致性指数 (CI) 为 0.77,优于任何临床模型(最佳 CI:0.70)。该模型在 Kaplan-Meier 分析中有效地根据 LF 风险对患者进行分层(P < .001),并显示出增量的净临床效益。在 24 个月时,我们发现低风险组和高风险组分别有 9% 和 74% 出现 LF。结论。临床和放射学特征的组合比单独的任何临床特征集更能预测无 LF。LF 高风险患者可能会受益于更严格的随访程序或强化治疗。
1 德国慕尼黑工业大学伊萨尔右翼医院放射肿瘤学系 2 德国诺伊尔贝格慕尼黑亥姆霍兹中心亥姆霍兹 AI 3 德国慕尼黑工业大学伊萨尔右翼医院诊断和介入神经放射学系 4 德国慕尼黑工业大学 TranslaTUM - 癌症转化中央研究所 5 德国慕尼黑工业大学信息学系 6 瑞士苏黎世大学放射肿瘤学系 7 德国马格德堡马格德堡大学医院放射肿瘤学系 8 德国耶拿弗里德里希-席勒大学耶拿大学医院放射治疗和放射肿瘤学系 9 瑞士苏黎世大学定量生物医学系 10慕尼黑,德国慕尼黑 11 海德堡大学医院放射肿瘤学系,德国海德堡 12 海德堡放射肿瘤学研究所 (HIRO),国家放射肿瘤学中心 (NCRO),德国海德堡 13 德国哥廷根大学医学中心放射肿瘤学系,德国哥廷根 14 阿劳州立大学 KSA-KSB 放射肿瘤学中心,瑞士阿劳 15 德国富尔达综合医院放射肿瘤学系,德国富尔达 16 德国基尔石勒苏益格-荷尔斯泰因大学医学中心放射肿瘤学系 17 德国弗莱堡大学医学中心放射肿瘤学系,德国弗莱堡 18 德国癌症联盟 (DKTK),弗莱堡合作伙伴中心,德国弗莱堡 19 塞浦路斯欧洲大学德国肿瘤中心放射肿瘤学系,塞浦路斯利马索尔20 德国法兰克福及北德 Saphir 放射外科中心,基尔,德国 21 德国法兰克福大学医院神经外科系,法兰克福,德国 22 德国慕尼黑翻译放射医学研究中心 (DKTK),慕尼黑合作网站,慕尼黑,德国 23 德国慕尼黑亥姆霍兹中心放射医学研究所 (IRM),放射科学系 (DRS),慕尼黑,德国 24 德国慕尼黑工业大学医学人工智能与信息学研究所
土壤呼吸是用于量化土壤中微生物活性的最长且最常用的参数之一(Kieft和Rosacker,1991)。它被定义为氧(O 2)摄取或二氧化碳(CO 2)通过土壤微生物进化,包括有氧和厌氧代谢的气体交换(Anderson,1982)。土壤呼吸是由土壤微生物和中莫索纳对有机物矿化产生的,其中有机化合物被氧化为二氧化碳和水,同时吸收了有氧微生物的氧气。在自然的,不受干扰的土壤中(没有养分或有机材料),土壤微观和中间体之间存在生态平衡及其活动。然后,呼吸称为“基础呼吸”,该呼吸被定义为呼吸,而无需添加含碳(C)的底物。另一方面,在添加含糖,有机酸或氨基酸等含C的底物后测量的底物诱导的呼吸(SIR)是土壤呼吸,并用作土壤微生物生物量的量度。
摘要 在埃及农业研究中心农场 (Kaha) 连续两个冬季(2020/2021 和 2021/2022)对朝鲜蓟进行了田间试验。本研究调查了以不同比率在土壤中施用蚯蚓堆肥的影响。结合叶面施用微量元素和不同比率的蚯蚓清洗剂对朝鲜蓟植物生长、鲜重和干重、产量构成和化学成分的影响。试验采用裂区设计;在主地块中以不同的速率(1、1.5 和 2 吨/次)添加蚯蚓堆肥,并与推荐剂量的堆肥(2 吨/次作为对照)进行比较。子区分别在种植后 60-80-100-120 天进行叶面喷洒,1-水为对照,2-微量元素(Fe、Mn、Cu 和 Zn)为 50 g/100 升水,3-蚯蚓冲洗液为 10 升/100 升水。结果表明,(蚯蚓堆肥 1.5 吨/次施肥和喷洒蚯蚓冲洗液处理)之间的相互作用记录了最高的总产量,同时,(堆肥+蚯蚓冲洗液和微量元素)组合记录了最低的花头产量。而早期作物的最高值来自以 1 吨/吨蚯蚓堆肥+蚯蚓冲洗液的施肥率。叶面喷洒施用蚯蚓冲洗液和 2 吨/次施肥。增加了菊粉百分比。另一方面,叶面施用微量营养素以及 1 吨/次蚯蚓堆肥可提高干物质百分比。关键词:蚯蚓堆肥-蚯蚓清洗-微量元素-洋蓟-有机施肥。