数学系成立于 2008 年,与 BITS Pilani 的海得拉巴校区同时成立。目前,该系与计算机科学系合作提供综合理科硕士、数学博士学位和数据科学辅修课程。我们还通过工作综合学习计划 (WILP) 为行业专业人士提供各种课程和计划。该系有 28 名教职员工,其中 3 名是教授,12 名是副教授,13 名是助理教授。我们的教职员工积极参与数学多维领域的研究,例如代数、分析、应用统计、计算流体动力学、宇宙学和相对论、密码学、微分和积分方程、图论、数学建模、数论和量子信息。
Marcellin Atemkeng 博士 罗德斯大学 m.atemkeng@ru.ac.za 射电干涉技术、射电天文学机器学习、大数据和学习算法 Lucia Marchetti 博士 开普敦大学 lucia.marchetti@uct.ac.za 多波长星系/AGN 形成和演化、强引力透镜、大数据可视化技术 Mario Santos 教授 西开普大学 mgrsantos@uwc.ac.za 使用射电望远镜进行宇宙学研究,使用 MeerKAT 和 SKA 进行 21 厘米强度测绘。再电离和 HERA 望远镜 Roger Deane 教授 威特沃特斯兰德大学 roger.deane@wits.ac.za 使用 MeerKAT(+) 进行强透镜研究;使用 VLBI 巡天进行星系演化;双星 SMBH
上述这些研究线索有两个共同特点:过去十年来进展显著加速,以及与量子信息科学和量子多体物理学之间的联系日益深入和核心。这些进展令人欣慰,但仍有许多未解之谜。边界系统中典型状态的本体对偶是什么?这与引发这些发展的防火墙悖论 [ 34 ] 有何关系?黑洞奇点的本质是什么?它在这一思想圈中扮演什么角色?这些想法如何超越 AdS 时空,尤其是延伸到类似于我们世界的宇宙学?黑洞各个微观状态的本体解释是什么?是否有可能在实验室中构建模型系统,让我们能够通过实验深入了解其中的一些问题?
摘要CCAT PRIME项目的Fred Young Simbillimimeter望远镜上的主要CAM接收器旨在通过敏感的宽带,极性计和光谱测量来解决重要的天体物理和宇宙学问题。开发中的主要频率频段包括对极化敏感的宽带通道的280、350和850 GHz,对于光谱仪来说包括210-420 GHz。微波动力学电感检测器(MKID)是探测器技术的自然选择,在这些高频下,大格式阵列所需的多种式读数的简单性。我们在这里提出了FeedHorn耦合280 GHz极化MKID阵列的初始实验室表征,并概述了后续MKID阵列的计划以及测试台的开发以表征它们。
WP4。绝对中微子质量1。简介量子传感器可能会在实验室测量绝对中微子质量的实验室测量中取得突破。Katrin实验采用的当前领先技术是基于磁绝热准直和静电(MAC-E)滤波,该技术无法扩展到Katrin的0.2 eV敏感性。宇宙学目前提供了绝对中微子质量的最敏感探针,但依赖于模型,不是实验室测量的替代品。中微子振荡的结果表明,β衰变实验中的敏感参数电子中微子质量具有严格的下限。对于正常有序的频谱,它不能小于50 MEV,而9 MEV [1],如图1。它也与中微子的主要或狄拉克性质无关。
PHYS 1055 - 天文学概论 (3 个学分) 天文学主题的综合课程,涵盖从太阳系到宇宙的各种主题,应用基于证据的推理、批判性思维以及理论模型和观察的使用。1055 的重点是太阳系:视天运动、望远镜、物质和辐射、行星的特性、太阳系的结构和演化、影响对太阳系理解的文化和跨文化方面、气候变化作为全球挑战。1056 的重点是宇宙:恒星、恒星形成、恒星演化、银河系的组织、星系、类星体、宇宙的结构和演化、宇宙学模型、天文学思想发展的文化和跨文化方面、宇宙中的生命。途径概念领域:4 自然科学推理、11 跨文化和全球意识。教学接触时间:(3 讲座、3 学分)
航空航天工程师负责设计、分析、建模、模拟和测试飞机、航天器、卫星、导弹和火箭。航空航天技术还扩展到在气体或液体中移动物体的许多其他应用。例如高尔夫球、高速列车、水翼船或风中的高楼大厦。作为一名航空航天工程师,您可能会参与猎户座太空任务,该计划计划在 2020 年之前将宇航员送上火星。或者,您可能会参与开发新一代太空望远镜,这是我们一些最重要的宇宙学发现的来源。但外太空只是航空航天工程师可以探索的众多领域之一。您可能会为我们的航空公司开发商用客机、军用喷气式飞机或直升机。更实际的是,您可以设计最新的地面和海上交通工具,包括高速列车、赛车或探索海底生命的深海船只。