全息时空 (HST) 的形式主义是将洛伦兹几何的原理翻译成量子信息语言。沿类时间轨迹的间隔及其相关的因果菱形完全表征了洛伦兹几何。贝肯斯坦-霍金-吉本斯-'t Hooft-雅各布森-菲施勒-萨斯坎德-布索协变熵原理将与菱形相关的希尔伯特空间维度的对数等于菱形全息屏幕面积的四分之一,以普朗克单位测量。这一原理最令人信服的论据是雅各布森推导的爱因斯坦方程作为这一熵定律的流体动力学表达。在这种情况下,零能量条件 (NEC) 被视为熵增加局部定律的类似物。爱因斯坦相对论原理的量子版本是一组对因果钻石沿不同类时轨迹共享的相互量子信息的约束。将这一约束应用于相对运动轨迹是 HST 中最大的未解问题。HST 的另一个关键特征是它声称,对于非负宇宙常数或远小于负 cc 渐近曲率半径的因果钻石,钻石本体中的局部自由度是全息屏幕上定义的变量的约束状态。该原理对 BH 熵公式中原本令人费解的特征进行了简单的解释,并解决了 Minkowski 空间中黑洞的防火墙问题。它激发了 CKN [ 1 ] 的协变版本,该版本对量子场论 (QFT) 的有效性范围有限制,并详细描绘了 QFT 作为精确理论的近似值出现的方式。
式左侧是具有宇宙常数 Λ 的经典时空 g ab 的通常爱因斯坦张量,而右侧 ⟨ T QFT ab ⟩ 是某个量子态 | Ψ ⟩ 下量子场论的(重正化)应力能量张量的期望值。半经典引力应被视为一种近似,且仅在特定范围内有效。事实上,半经典近似在普朗克尺度附近失效,因为在这个层面上,量子引力效应变得重要,以至于 ( 1 ) 不再可信。另外,方程 ( 1 ) 中的半经典场预计对一般量子态 | Ψ ⟩ (例如宏观叠加态)无效 [3]。然而,当 | Ψ ⟩ 近似为经典态(即相干态)时,半经典场是有效的。即使在有效范围内,半经典引力(尤其是黑洞)的解也很难得到持续研究。很大程度上,这是因为解决(1)相当于解决反作用问题——量子物质如何影响经典几何,反之亦然——这是一个众所周知的困难且开放的问题,因为它需要同时解决几何和量子相关器的耦合系统。通常在三维时空维度和更高的维度 1 中,这个问题是以扰动的方式进行研究的,提供的见解有限,尤其是当反作用效应变大时。这些困难只有在存在大量量子场或场论强耦合时才会加剧,就像量子色动力学和粒子物理学的标准模型一样。可以探索大量强相互作用量子场的物理的一个背景是反德西特/共形场论 (AdS/CFT) 对应 [ 6 ]。AdS/CFT 诞生于弦理论研究,是一个非扰动候选者
TGD 导致了 [46, 56] 中讨论的两种关于物理学的观点。在第一种观点 [14, 13, 17] 中,物理学被视为时空几何,在 H = M 4 × CP 2 中被确定为 4 曲面,在更抽象的层面上,物理学是“经典世界的世界”(WCW)的几何,由基本作用原理的优选极值(PE)空间组成,将玻尔轨道的类似物定义为具有奇点的极小曲面。在第二种观点 [29] 中,物理学被简化为数论概念,类似于动量空间的 M 8 中的 4 曲面定义了基本对象。类似于动量位置对偶的 M 8 − H 对偶 [42, 43] 将这两种观点联系起来。 M 8 c (复数 M 8 ) 中的 4 曲面,可解释为复数八元数,它们必须是结合的,即它们的法向空间是四元的。对于给定的时空区域,它们由实参数多项式 P 的根延至 M 8 c 中的多项式来确定。这些根定义了 M 4 c ⊂ M 8 c 的质量壳层集合,通过全息术,它们定义了 H 的 4 维表面。H 级的作用原理由 TGD 的扭转升力决定,是 4-DK¨ahler 作用与体积项 (宇宙常数) 之和。它不是完全确定性的,H 中作为 PE 的时空曲面与玻尔轨道类似,可视为具有框架的肥皂膜的类似物,对应于确定性失效的奇点。除了由 P 的根确定的光骨架本时 a = an 对应的双曲 3 曲面外,框架还提供额外的全息数据。框架包括部分子 2 曲面的类光轨道和连接它们的弦世界面。新颖之处在于,与零能量本体论 (ZEO) [33] 一致的是,类空间数据对于全息术来说是不够的,还需要类时间数据,而弦世界面对于编织和 TQC 来说是绝对必要的。
自 20 世纪 50 年代末以来,人类进入太空(本文定义为低地球轨道 (LEO) 及更远的太空),除极少数例外,仅限于训练有素的宇航员。展望未来,人们越来越期望技术能够使公众能够参观太空和在太空度假。随着现在所谓的数字现实 (DR) 或沉浸式临场感的功能不断增强,太空度假有两种方式:虚拟和物理。本文将讨论这两种方式(参考文献 1)。潜在的太空旅游体验包括空间站、卫星、行星和小行星等目的地。此外,实际上只有使用目前已知或预计的技术,才能围绕其他恒星的行星/卫星。本文讨论了技术需要解决/正在解决的太空旅游问题,以实现太空旅游、由此产生的太空旅游体验和开发商业深空。太空是黑暗、寒冷的,几乎是完美的真空,具有微重力、GEV、银河系空间辐射和难以想象的距离,固体物质是微量物质,但却提供了使人类生存所需的能量。太空通常被称为最后的边疆,而如上所述,一般的环境条件与人类在地球上进化时的环境条件大不相同。因此,需要大量技术才能使人类进入太空。事实上,即使是物理学似乎也在宇宙尺度上发生变化,包括暗物质/能量、量子理论和宇宙常数之间的巨大分歧,以及反物质发生了什么之谜等。人们对其他星球上的生命的兴趣和寻找也日益增加,这些星球可能是以硅或硫为基础的,而不是碳。总的来说,有很多东西需要学习。月球/火星/附近小行星以外的太阳系目的地需要大大增加旅行时间(数年到数十年)、成本、距离以及健康和安全技术。太空旅游问题和选择实现太空旅游必须解决的基本问题是安全性/可靠性和成本/价格。其中,第一个是最困难和最困难的
有多种动机将引力理论扩展到爱因斯坦广义相对论 (GR) 之外。所有将这一理论与量子物理相协调的尝试都会以额外场、高阶运动方程或高阶曲率不变量的形式引入与广义相对论的偏差。例如,取弦理论中最简单的玻色弦理论的低能极限,得到 ω = − 1 布兰斯-迪克理论,而不是广义相对论,后者是标量张量理论的原型(ω 是布兰斯-迪克耦合)[1,2]。然而,研究替代引力理论的最有力动机来自宇宙学。例如,最受数据青睐的膨胀模型,即斯塔罗宾斯基膨胀,包括对广义相对论的量子修正。最重要的是,基于广义相对论的标准冷暗物质宇宙学模型无法令人满意地理解当今宇宙的加速膨胀:它需要引入一个令人惊奇的精细调节的宇宙常数或另一种形式的特设暗能量,而暗能量的性质仍然难以捉摸[3]。无论如何,即使承认暗能量的存在,冷暗物质的其他问题仍然无法解决,如哈勃张力[4,5]、对同样神秘的暗物质的要求,以及困扰宇宙学和黑洞物理学的奇点问题。因此,研究其他引力理论来解决或缓解这些问题至少是合理的。修改广义相对论最简单的方法是增加一个标量(大质量)自由度,这导致了 Brans-Dicke 引力[6]及其标量-张量推广[7-10]。 f(R) 类引力理论原来是标量张量理论的一个子类,它在解释当前没有暗能量的宇宙加速过程中非常流行([11],参见[12-14]的评论)。在过去的十年中,旧的 Horndeski 引力 [15] 被重新审视并进行了深入研究(参见[16]的评论)。这类理论被认为是最一般的标量张量引力,允许二阶运动方程,但后来人们发现,如果满足合适的退化条件,更一般的退化高阶标量张量 (DHOST) 理论可以允许二阶运动方程(参见[17]的评论)。Horndeski 和 DHOST 理论在其作用中包含任意函数,这使得场方程非常繁琐,研究起来也很困难。多信使事件 GW170817/GRB170817 [ 18 , 19 ] 证实了引力波模式以光速传播,这基本上排除了结构最复杂的 Horndeski 理论 [ 20 ],但仍存在许多可能性(对应于作用中的四个自由函数)。因此,很难掌握这些理论及其解决方案的详细物理意义,并且大部分工作必然局限于形式理论方面和寻找分析解决方案。