摘要:本文将 Jordan-Lee-Preskill 算法(一种模拟平直空间量子场论的算法)推广到 3+1 维膨胀时空。推广后的算法包含编码处理、初态准备、膨胀过程和后期宇宙可观测量的量子测量。该算法有助于获得宇宙非高斯性的预测,可作为量子器件的有用基准问题,并检验膨胀微扰理论中关于相互作用真空的假设。我们的工作内容还包括对宇宙微扰理论的格子正则化的详细讨论、对 in-in 形式主义的详细讨论、对使用可能适用于 dS 和 AdS 时空的 HKLL 类型公式进行编码的讨论、对边界曲率微扰的讨论、对时间相关汉密尔顿量的三方 Trotter 模拟算法的描述、用于模拟无间隙理论的基态投影算法、对量子扩展的 Church-Turing 论题的讨论以及对在量子装置中模拟宇宙再加热的讨论。
元宇宙和 Web 3.0 创建了一个新的数字世界,它具有特定的属性和行为,可以复制物理实体的行为和过程并对其产生影响。本研究旨在加深我们对元宇宙如何影响供应链和运营管理 (SCOM) 的理解。利用结构化文献检索的元素,并借鉴网络物理系统、数字孪生、云和数字供应链以及工业 4.0/工业 5.0 概念,我们提出了一个涵盖多个社会技术维度的元宇宙 SCOM 框架。我们认为,进一步的元宇宙发展可能导致物理 SCOM、元宇宙 SCOM 和 SCOM 共存,以协调物理世界和元宇宙世界。我们提供了一个结构化的未来研究议程,指向由元宇宙驱动的可见性、数据分析的计算能力、数字协作和连接性等新的研究问题和主题。新的研究领域可以专门针对元宇宙和新颖的 SCOM 流程和决策领域(例如,元宇宙和实体产品的联合需求预测、元宇宙中的数字库存分配、元宇宙和实体世界的综合生产计划、以及数字产品的定价和签约)以及新的绩效衡量标准(例如,虚拟客户体验水平、数字产品的可用性以及数字弹性和可持续性)。
- 每月最多 470'000 GPU 小时; - 最多 1 PB 工作和 1 PB 存档(无临时配额); ADA Cloud @ CINECA:71 个交互式 OpenStack 节点,每个节点 2 x CPU Intel CascadeLake 8260,每个节点有 24 个内核,2.4 GHz、768GB RAM 和 2TB SSD 存储 è 系统上有 6600 个 vCPU; - 从 2024 年 1 月 1 日起可用的资源 è 1000 个 vCPU。
可能存在一种规范结构,它基于宇宙宿主的偏好或协议,与人工智能的发展高度相关。特别是,我们可能有道德和审慎的理由来创造超级智能,使其成为一个优秀的宇宙公民——即遵守宇宙规范并为宇宙做出积极贡献。专注于促进人类和其他陆地生物的福祉,或坚持我们自己的规范必须不惜一切代价占上风,可能是令人反感和不明智的。这种态度可能类似于一个只追求个人利益的人的自私,或者一个傲慢的人,他们表现得好像自己的信念使他们有权践踏社会规范——尽管考虑到我们目前相对于宇宙宿主成员的低下地位,情况可能会更糟。谦逊的态度可能更合适。
14单极397 14.1田间理论397 14.1.1'T HOOFT-POLYAKOV MONOPOLE 397 14.1.2电荷量化条件399 14.1.3单极质量和结构400 14.1.1.4 Bogomol'nyi Bound和Prasad-sonunerfield lim and lim lim lim 401 14.1.1.1.1.1.1.1 14.24.24.24.24.24.24.2 nmifification 40.2。阻力力403 14.2.2 Baryon衰减催化405 14.3单极的形成和演变406 14.3.1形成406 14.3.2歼灭机制407 14.3.3观察界410 14.3.4溶液求解单台面问题412 14.4单翼412 14.4单调413 14.4.14.41413 1413 1413 1413 1413 1413 1413 143 14.4.3 Langacker-Pi型号418 14.4.4因果关系419 14.4.5亚稳态单杆?420 14.5全局单脚孔421 14.5.1物理性质421 14.5.2重力场423 14.5.3进化425 14.5.4宇宙学含义426 14.5.5通过串连接的全球单极427
摘要 本文提出了一种理解宇宙结构的新方法,即通过识别基于黄金比例的三维分形图案来理解宇宙的结构,这些图案来自斐波那契数列、卢卡斯数列和一个名为卡拉斯科的新数列。通过分析这些序列的数字根及其几何表示的研究表明,宇宙可以作为一个自组织的量子信息网络运行,其中网络的每个点都拥有来自其他点的信息,并通过双向交换进行交互,由于时空中信息以黄金比例排列,有助于宇宙的演化。发现的分形图案按照黄金比例排列成循环六边形结构。这一发现使得将宇宙描述为一个自组织的全息系统成为可能,该系统能够有效地存储和传输不同尺度上的信息,从量子到宇宙学层面。这种方法统一了量子物理学、分形几何和宇宙学的概念,为传统的宇宙学理论提供了另一种视角。这些结果可能对基础物理学、生物学和量子技术产生重大影响,为量子计算、人工智能和先进材料领域的新工具和新应用的创造奠定基础。这项研究拓展了我们对几何、信息和宇宙结构之间关系的理解。