目的。我们为 X 射线照射吸积盘的宽带光谱能量分布 (SED) 开发了一种新的物理模型,该模型考虑了吸积盘和 X 射线冕的相互作用,包括由中心黑洞 (BH) 的强引力对光传播和光子能量从盘到冕静止坐标系或从冕静止坐标系到观察者的转换引起的所有相对论效应。方法。我们假设一个开普勒光学厚、几何薄的吸积盘和一个灯柱几何中的 X 射线源。X 射线冕发射各向同性的幂律类 X 射线谱,具有高能截止。我们还假设标准盘模型最内层热辐射释放的所有能量都被传输到冕,从而有效冷却该区域的盘。此外,我们还包括由于 X 射线源对圆盘照明的吸收部分进行热化而导致的圆盘加热。还包括由于圆盘照明而导致的 X 射线反射。X 射线光度由从吸积盘(或外部源)提取的能量和散射光子本身带来的能量给出,因此能量平衡得以保持。我们通过迭代过程计算了低能 X 射线截止,充分考虑了圆盘的 X 射线照明与进入日冕的吸积盘光谱之间的相互作用。我们还计算了日冕半径,考虑到康普顿化过程中光子数的守恒。结果。我们详细讨论了模型 SED 及其对系统参数的依赖性。我们表明,圆盘-日冕相互作用对产生的 SED 有深远的影响,它限制了 X 射线光度并改变了 UV 蓝色凸起的形状和正常化。我们还将模型 SED 与目前可用的类似模型预测的 SED 进行比较。我们使用新代码来拟合 NGC 5548 的宽带 SED,这是一个典型的 Seyfert 1 星系。当与之前模型拟合同一源的光学和紫外线时间滞后的结果相结合时,我们推断出黑洞自旋较高、系统倾角中等、吸积率低于爱丁顿的 10%。该源的 X 射线光度可能由圆盘中耗散的 45-70% 的吸积能量支持。新模型名为 KYNSED ,可供公众使用,用于在 XSPEC 光谱分析工具中拟合 AGN SED。结论。 AGN 吸积盘的 X 射线照射可以解释至少一个 AGN(即 NGC 5548)观测到的 UV 和光学时间滞后以及宽带 SED。过去几年中,我们利用多波长、长期监测观测同时研究了这些 AGN 的光学、UV 和 X 射线光谱和时间特性,这将使我们能够研究这些系统中的 X 射线和吸积盘几何形状,并限制其物理参数。
无论坍缩物体的质量、电荷和角动量是多少,坍缩的最终状态仅由物体的质量、电荷和角动量来表征。由于黑洞会向渐近观察者隐藏经典信息,所以这仍然是可以接受的。然而,它在半经典背景下的影响却令人担忧,并引起了所谓的信息丢失悖论。[4] 首次研究了经典黑洞背景中量子场的散射。结果表明,在 I − 处制备的初始真空状态将在黑洞几何中演化为未来零无穷大 I + 处的热状态。因此,存在非幺正演化和信息丢失。我们可以在坍缩过程的背景下想象这一点,该过程提供经典背景和在 I − 处在真空中制备的量子态。 I + 处的外态是热态,这假设意味着黑洞正在发射热辐射,这会导致其质量、角动量等减少,并最终导致其完全蒸发。因此,作为坍缩和随后蒸发的最终状态,人们在 I + 处发现黑洞奇点和热辐射。有关坍缩物质的信息丢失了。无毛发猜想在这里的作用是,热态仅由稳态黑洞的非平凡毛发来表征。因此,一种可能的解决办法可能是如 [ 5 ] 中所建议的,黑洞上存在更多的毛发。众所周知,黑洞的质量、角动量和电荷是与规范对称性相关的守恒电荷,当存在边界时,规范对称性就会变成真正的对称性。因此,人们可以通过搜索大于度量等距群的对称性群来寻找毛发。零无穷处渐近平坦时空的例子 [ 6 – 8 ]、渐近局部反德西特时空的例子 [ 9 ],以及对近“视界”对称性的探索 [ 10 – 12 ] 告诉我们,情况确实如此。[ 5 ] 中的提议完全源于零无穷处渐近平坦时空的经验,探索了黑洞视界的对称性。对于 I + ( I − ),对称群(定义为保持度量上的衰减条件的微分同胚)变为无限维,即所谓的 BMS + ( BMS − ),它是超平移的无限维阿贝尔群与 Lorentz 群(或其推广,即 Witt 代数的两个副本 [ 13 ] 或球面上的光滑微分同胚代数 [ 14 , 15 ])的半直积。尽管黑洞视界与 I + 或 I − 相似,但由于零生成器的非亲和性,尤其是在非极值情况下,该群可能无法实现为对称性。然而,超平移的李群理想却是保持基本视界结构的对称性。超平移黑洞可能有两种含义。它可能是近视界超平移 [ 5 ],也可能是作用于全局黑洞解的 I + 和 I − 处的渐近超平移 [ 16 , 17 ]。这两个概念是否是同一个概念还远未可知,正是因为近视界超平移生成器在本体中的扩展可能与 I − 处的超平移生成器不匹配。在这里,我们将
量子模拟模仿一个量子系统与另一个人工组织的量子系统(即量子模拟器)的演化[1]。具有量子比特的数字量子模拟器可以对由各种粒子(如自旋、费米子和玻色子)组成的任意量子系统进行精确或近似编码,具体取决于粒子的性质。量子比特可以通过多种物理系统实现,如捕获离子[2,3]、核磁共振(NMR)[4,5]、超导电路[6,7]、量子点[8]和光子[9]。因此,无论模拟器的物理性质如何,我们都可以使用适当的量子比特编码协议用数字量子模拟器模拟任何量子系统。在各种多粒子量子系统中,玻色子系统被认为从数字量子模拟中受益匪浅。 Knill、Laflamme 和 Milburn (KLM) 证明后选择线性光学能够进行通用量子计算 [10]。此外,Aaronson 和 Arkhipov [11] 提出的玻色子采样也是证明量子器件计算优越性的有力候选者。玻色子采样问题被认为属于经典的难采样问题。受非相互作用玻色子系统计算能力的启发,提出了几种玻色子到量子比特编码 (B2QE) 协议,以使用数字量子计算机模拟玻色子问题 [12-18]。大多数研究直接使用 Fock 态的一元或二元量子比特表示作为量子比特编码协议,将玻色子产生和湮灭算子离散化。参考文献 [15] 提出了一种用于线性和非线性光学元件的数字量子模拟方法。参考文献[ 17 ] 基于文献 [ 19 ] 开发的玻色子-量子比特映射,使用 IBM Quantum 模拟了束分裂和压缩算子。所需资源(例如量子比特和门的数量)因编码协议而异。文献 [ 18 ] 比较了不同编码协议之间的资源效率。在本文中,我们结合 Shchesnovich [ 20 ] 分析的玻色子-费米子对应关系和费米子到量子比特编码 (F2QE) 协议 [ 21 , 22 ],提出了一种替代的多玻色子数字模拟方法。具体而言,我们的协议将玻色子态转换为具有内部自由度的费米子态,然后通过 F2QE 协议(Jordan-Wigner (JW) 变换)将其转换为量子比特态。在我们的模拟模型中,具有 M 个 N 量子比特束的量子电路可以模拟 M 模式下 N 个玻色子的数量守恒散射过程。我们的协议总结如图 1 所示。我们的协议最显著的优势是,它可以使用量子比特数的直接扩展来有效地模拟非理想的部分可区分玻色子,即具有内部自由度的玻色子。作为概念证明,我们使用我们的协议生成了 Hong-Ou-Mandel (HOM) 倾角 [ 23 ]。HOM 效应在光量子系统中非常重要,它为线性光量子计算系统中的逻辑门提供基本资源。参考文献 [ 24 ] 讨论了 HOM 效应与基于量子比特的 SWAP 测试之间的正式联系。为了模拟 HOM 倾角,我们需要一种方法来为光子添加内部自由度。在我们的例子中,通过将量子比特数增加两倍就可以轻松实现,这表明我们的协议适合模拟部分可区分的玻色子。我们使用 IBM Quantum 和 IonQ 云服务验证了电路的有效性。本文结构如下:第 2 部分介绍我们的数字玻色子模拟协议。在回顾了玻色子-费米子变换协议之后,我们展示了如何将此变换与 JW 变换相结合进行数字玻色子模拟。在第 3 部分中,我们将模型应用于 HOM 倾角实验。我们用一个八量子比特电路模拟双光子部分区分性。最后,第 4 部分总结我们目前的工作并讨论其未来可能的扩展。