摘要 — 量子计算领域的最新进展引发了新一轮的密码系统创新,因为现有的公钥密码系统被证明容易受到成熟量子计算机发起的攻击。随着这一创新,已经提出了几种可能的后量子密码 (PQC) 候选密码算法,其中基于格的密钥封装机制 (KEM) Saber 是有前途的密码系统之一。注意到该领域的最新趋势更多地转向了 PQC 算法的有效实现,在本文中,我们建议在现场可编程门阵列 (FPGA) 平台上为 KEM Saber 提供一种新型紧凑型协处理器。具体而言,所提出的策略旨在获得一种适用于不同安全级别的 Saber 的通用方法,具有灵活的处理方式但复杂度较低。总的来说,我们进行了四层重大创新以完成所提出的工作:(i)我们以通用格式制定并推导了上述 KEM Saber 主要计算密集型操作(即多项式乘法)的可扩展矩阵起源处理 (SMOP) 策略;(ii)然后,我们介绍了基于 SMOP 策略的多项式乘法算法的细节,包括相对于 Saber PQC 方案的算法运算和结构 / 实现创新;(iii)我们还遵循了现有的协处理器设计流程
数字文档成为当今生活各个方面的重要组成部分之一,从存储个人数据到交换敏感业务信息。拦截的威胁或拦截法律信息的努力,包括未经所有者许可未经许可访问或检索数据的情况。,因此需要采取适当的行动来保护数字文件免受犯罪威胁。应用加密技术提供的解决方案之一。通过将AE与其他算法相结合,已经开发了一些先前的研究。其中之一是使用加密哈希函数,例如SHA-256和SHA-512。到目前为止,SHA(安全哈希算法)仍然具有更新的开发,SHA-3是SHA的最新版本,可提高安全性和效率。本研究旨在评估AES-256与SHA3-512合并在保护数字文档方面的有效性,尤其是在Web应用程序的背景下。研究人员希望使用SHA3-512的AES-256提供更好的安全级解决方案。通过这种组合,文档不仅使用AES-256来保护其内容,还可以使用SHA-3来确保完整性和身份验证。,这项研究可以帮助提供替代方案,以加强数字文档的安全性并保护其免受日益复杂的数字环境中的各种犯罪威胁。
病毒学、疫苗和血清研究所 1. 背景 塞尔维亚共和国已从国际复兴开发银行 (IBRD) 获得一笔 9200 万欧元等值贷款,用于塞尔维亚紧急 COVID-19 应对项目 (SECRP) 的费用,贷款编号为 9120-YF。SECRP 的目标是应对 COVID-19 带来的威胁,并加强塞尔维亚的国家卫生系统,做好公共卫生防范。在“托尔拉克”病毒学、疫苗和血清研究所建立一座带有 BSL-3 实验室的新诊断实验室大楼的目的是加强该研究所的能力。BSL-3 实验室将满足处理需要这种生物安全级别的病原体的要求,例如黄热病病毒、西尼罗河病毒、东部马脑炎病毒、SARS-CoV-2 和 MERS-CoV,以及不同的细菌、真菌和立克次体病原体。 “托尔拉克”研究所的新诊断实验室大楼(BSL-3)将不用于动物研究。塞尔维亚共和国打算将部分贷款用于提供咨询服务,以制定职业健康与安全计划,并在“托尔拉克”病毒学、疫苗和血清研究所建造新的诊断大楼(BSL-3 实验室)期间协调职业健康与安全措施。为此,将选择一名个人顾问(以下简称“顾问”)来实施本职责范围内所列的活动。
我们提出了一种名为NTRU + PKE的新的基于NTRU的公钥加密(PKE)方案,该方案有效地纳入了PKE(称为FO PKE)的Fujisaki-Okamoto转换,以实现量子随机Oracle模型(QROM)中选择选择的ciphertext Security。虽然NIST PQC标准化过程中的首轮候选人Ntruencrypt被证明是随机Oracle模型(ROM)中的ciphertext secure,但它缺乏QROM的相应安全性证明。我们的工作扩展了Kim和Park于2023年提出的最近的ACWC 2转换的能力,证明了ACWC 2转化方案可以作为应用FO PKE的足够基础。具体来说,我们表明ACWC 2转化方案达到了(弱)γ-传播,这是构建Ind -CCA安全PKE方案的重要属性。此外,我们提供了QROM中FO PKE安全性的第一个证明。最后,我们表明可以将FO PKE进一步优化为更有效的转换,即FO PKE,从而消除了在解密期间重新掺入的需求。通过使用适当的参数化实例化ACWC 2转化方案,我们构造了NTRU + PKE,该方案支持256位消息加密。我们的实现结果表明,在大约180位的安全级别上,NTRU + PKE的速度比K YBER + AES-256-GCM快2倍。
摘要。键盘包裹机制可保护量子随机甲骨文模型中所选的密文攻击(Ind-CCA-Secure KEMS),已由Boneh,Dagdelen,Fischlin,Lehmann,Lehmann,Schafner和Zhandry(Crypto 2012),Crypto 2012),Targhi and Targhi and targhi and targhi(targhi and unuh and unuh(tcc and unruh and unruh and in ccc and kirfmanz and hofmanz and hofmanz)提出。 2017)。但是,所有这些构造获得的方案的安全级别尤其是其构建基块原始安全级别的一半。在本文中,我们给出了一种将弱安全的公钥加密方案紧密转换为量子随机甲骨文模型中的IND-CCA安全KEM的转换。更准确地说,我们为确定性的公钥加密(DPKE)定义了一个称为“不相关性的可模拟性”的新安全概念,我们提出了一种方法,可以将不连接的可模拟DPKE方案转换为Ind-CCA键键封闭机制方案,而无需授予相当可能的安全性降级。此外,我们还提供了DPKE方案,其差异性可显着降低为量词后假设。结果,我们获得了量子随机甲骨文模型中各种量子后假设的Ind-CCA安全性KEM。关键字:紧密的安全性,被选为ciphertext的安全性,Quantum加密后,KEM。
囚犯住房单元数量:如果该设施没有独立的住房单元,请输入 0。DOJ PREA 工作组关于住房单元定义的常见问题解答:如何为 PREA 标准定义“住房单元”?这个问题尤其适用于具有相邻或互连单元的设施。住房单元最常见的概念是建筑。普遍认同的定义是一个由物理屏障包围的空间,可通过一个或多个不同类型的门进入,包括商业级旋转门、钢制滑动门、联锁侧门等。除了主要入口和出口外,通常还包括额外的门以满足生命安全规范。该单元包含睡眠空间、卫生设施(包括厕所、盥洗室和淋浴间)以及不同配置的休息室或休闲空间。许多设施都设计有围绕控制室聚集的模块或吊舱。这种多吊舱设计为设施提供了一定的员工效率和规模经济。同时,该设计还提供了灵活性,可以单独安置不同安全级别的囚犯,或根据其他运营或服务方案分组的囚犯。一般来说,控制室被安全玻璃包围,在某些情况下,囚犯可以看到相邻的囚室。然而,从一个单元到另一个单元的观察通常受到视线角度的限制。在某些情况下,该设施通过安装单向玻璃完全防止了这种情况。这些多个囚室的建筑设计和功能用途都表明,它们是作为不同的住房单元进行管理的。
摘要。Noise 是一个框架,用于设计和评估双方之间的认证密钥交换 (AKE) 协议,该协议使用 Diffie-Hellman (DH) 作为唯一的公钥密码系统。在本文中,我们对 Noise 和 PQNoise(最近推出的后量子版本的 Noise 协议框架)的计算和通信成本进行了评估。此外,我们介绍了 12 种基本(交互式)Noise 模式及其 PQNoise 对应模式的组合,从而获得混合握手模式,并将它们纳入我们的评估中。我们将 PQNoise 和新的混合模式集成到 Noise-C 中,这是用 C 编写的 Noise 协议框架的参考实现。为了评估 Noise 及其变体,我们使用 Linux 网络模拟工具模拟了具有不同延迟、吞吐量和数据包丢失设置的网络。对于所有 Noise 握手,我们选择了提供可比(量子前)安全级别的密码系统,即 X25519 和 Kyber512。我们在两台不同的设备上进行了实验,一台是搭载 Intel Core i5-10210U CPU 的笔记本电脑,另一台是搭载 32 位 ARM Cortex-A7 处理器的 Orange Pi One 开发板。我们收集的结果表明,在正常网络条件下,Noise 模式和 PQNoise 对应模式的执行时间几乎相同,除非后者需要额外的握手消息。然而,在网络条件较差、数据包丢失率较高的情况下,PQNoise 落后于 Noise,这主要是因为 Kyber512 的公钥和密文相对较大。当数据包丢失率较低时,我们的混合握手的执行时间与相应的 PQNoise 握手几乎没有区别,而在数据包丢失率较高时,差异很小。
近年来,耐多药病原体备受关注。因此,在形势失控之前,迫切需要新的抗真菌和抗菌药物靶点。内含肽是一种多肽,它不需要辅因子或外部能量就能从外显肽自我剪接,从而导致外显肽片段的连接。内含肽存在于许多生物体中,包括人类病原体,如结核分枝杆菌、新型隐球菌、格特隐球菌和烟曲霉。由于内含肽元素不存在于人类基因中,因此它们是开发抗真菌和抗生素的有吸引力的药物靶点。到目前为止,已经报道了一些内含肽剪接抑制剂。金属离子如 Zn 2+ 和 Cu 2+ 以及含铂化合物顺铂通过与活性位点半胱氨酸结合来抑制结核分枝杆菌和新型隐球菌中的内含肽剪接。发现小分子抑制剂 6G-318S 及其衍生物 6G-319S 可抑制新生隐球菌和格特隐球菌中的内含肽剪接,MIC 为纳摩尔浓度。内含肽还用于许多其他应用。内含肽可用于使用小分子激活细胞内的蛋白质。此外,分裂内含肽可用于在实验性基因治疗中传递大基因,并利用毒素-抗毒素系统杀死混合微生物群中的选定物种。此外,分裂内含肽用于合成环肽和开发细胞培养模型,以在生物安全级 (BSL) 2 设施中研究包括 SARS-CoV-2 在内的传染性病毒。这篇小型评论讨论了内含肽在药物发现和治疗研究中的最新研究进展。
摘要:物联网(IoT)是一种技术范式,在过去的十年中获得了显着的信息,除其他功能外,还可以开发智能和可靠的设备网络。在这方面,它触发了最初实施的车辆临时网络(VANETS)的创建和演变,以确保驾驶员的安全性和避免造成事故的安全性。缺点是,这种快速发展在用户的隐私方面引起了严重关注,而试图窃听和拦截信息的攻击者或实体的人口显着增加。这给驾驶员跨越智慧城市带来了严重的风险。本文介绍的研究旨在根据他们确保的效率和安全水平来评估Vanet环境中的私人保护机制,考虑到Vanets为用户/驱动程序提供有限的资源。此外,讨论了椭圆曲线密码学在减少资源环境中的使用。最后,本文比较了三个密码算法,椭圆曲线密码学(ECC),超椭圆形曲线密码2(HECC-2)和HECC属3(HECC-3)(HECC-3)的性能,用于实现各个相关的真实性和安全消息传输机制,目的是实施货物范围,目的是实施。 区域。评估结果表明,在大多数指标中,ECC取代HECC-2和HECC-3。但是,HECC-2和HECC-3在选定的能量指标中表现出比ECC更好的反应。总体而言,观察到HECC算法还不够成熟,无法与ECC竞争。这是由于研究界没有足够的进步来优化HECC的事实,此外,HECC建立在相当复杂的数学基础上。但是,有迹象表明,一旦确实对HECC曲线进行了优化,HECC的速度和其他指标的表现将超过ECC,因为HECC-2和HECC-3使用具有与ECC相同的安全级别的较小的密钥大小。
1994 年,彼得·肖尔 (Peter Shor) 发现了一种可以有效找到大整数素因数的量子算法 [1]。数学家们长期以来一直对因式分解算法感兴趣,并开发了各种因式分解技术。过去几十年来,这个问题重新引起了人们的兴趣,因为广泛使用的 RSA 密码系统依赖于因式分解的假定难解性。最著名的经典算法是通用数域筛选法,它需要整数大小(即被分解数字的二进制表示中的位数)的亚指数时间。RSA 中用于现代安全级别的参数使用的整数非常大,以至于即使具有出色的计算能力,通用数域筛选法也过于低效。肖尔算法之所以如此引人注目,是因为它可以在量子计算机上以多项式时间运行。量子计算机是利用量子物理特性来存储数据和执行计算的机器。世界各地的研究人员和工程师在构建越来越大的量子计算机方面取得了稳步进展。虽然量子计算机无法全面超越传统计算机,但在某些应用领域,它们可以带来巨大的加速,例如计算化学、人工智能、机器学习、金融建模和药物设计(仅举几例)。目前,量子计算机尚未发展到在这些应用领域超越当今计算机的水平,但在未来几十年内,它们可能会实现这一目标。虽然上述应用将为社会带来积极效益,但 Shor 算法的颠覆性更强。在我们互联的世界中,信息通过使用加密技术得到保护。我们每天都使用互联网、手机、社交网络和云计算进行安全通信和进行金融交易。在幕后,运行我们数字基础设施的协议主要依赖于一些加密原语:公钥加密、数字签名和密钥交换。综合起来,功能