结果:使用血液作为MNGS测试样品,宿主DNA的比例为99.9%,只有三种细菌,未检测到真菌。在MNG中使用血浆时,宿主DNA的比例约为97%,检测到84个细菌和两种真菌。值得注意的是,分别在43对血液和血浆样品中检测到16S rRNA NGS。血液培养物检测到49种细菌(23个革兰氏阴茎和26克阳性球菌)和4种真菌,其中14种细菌被临床微生物学家视为污染物。对于所有血液培养物,血浆CFDNA MNG检测到78.26%(19/23)革兰氏阴性杆,17%(2/12)革兰氏阳性球菌,没有真菌。与血液培养物相比,血浆CFDNA MNG的敏感性和特异性检测细菌和真菌分别为62.07%和57.14%。
宏基因组新一代测序 (mNGS) 是诊断传染病的一种变革性方法,它利用无偏高通量测序直接检测和表征临床样本中的微生物基因组。本综述全面概述了 mNGS 技术的基本原理、测序工作流程和平台。该方法的骨干包括对从不同样本类型中提取的总核酸进行散弹枪测序,能够在不了解传染源的情况下同时检测细菌、病毒、真菌和寄生虫。mNGS 的主要优势包括它能够识别稀有、新型或不可培养的病原体,与传统的基于培养的方法相比,可以更全面地了解微生物群落。尽管有这些优势,但数据分析复杂性、高成本以及需要优化样品制备方案等挑战仍然是重大障碍。mNGS 在各种全身性感染中的应用凸显了其临床实用性。本综述中讨论的案例研究说明了其在诊断呼吸道感染、血流感染、中枢神经系统感染、胃肠道感染等疾病方面的功效。通过快速识别病原体及其基因组特征,mNGS 有助于及时和有针对性的治疗干预,从而改善患者的治疗结果和感染控制措施。展望未来,mNGS 在传染病诊断领域的前景看好。生物信息学工具和测序技术的进步有望简化数据分析、提高灵敏度和特异性并缩短周转时间。与临床决策支持系统的集成有望进一步优化 mNGS 在常规临床实践中的利用。总之,mNGS 代表了传染病诊断领域的范式转变,为微生物多样性和发病机制提供了无与伦比的见解。尽管挑战依然存在,但持续的技术进步具有巨大的潜力,可以巩固 mNGS 作为现代医学武器库中的关键工具的地位,使临床医生能够精确、快速、全面地检测病原体。
DNA准备(M)标记(鳕鱼20060059)准备参考指南,没有任何修改。这是完整的Illumina文档(https://emea.support.illumina.com/downloads/illumina-dna-prep-reference-guide-guide-1000000025416.html)的链接。填写Illumina DNA库准备清单可能很有用:https://emea.support.illumina.com/downloads/illumina-dna-dna-prep-checklist- 100000000033561.html
作者的完整列表:Alessandri,Giulia;帕尔马大学,兽医医学系米兰,莱昂纳多克里斯蒂安·曼卡贝利;帕尔马大学,生命科学Mangifesta,Marta;帕尔马大学,生命科学Lugli,Gabriele Andrea;帕尔马大学,化学,生命科学与环境可持续性系Alice,Alice;帕尔马大学,Genprobio Srl Duranti,Sabrina Turroni,Francesca Ossiprandi,Maria;帕尔马大学,医学兽医科学系,杜威(Douwe);爱尔兰国立大学,Marco微生物学系;帕尔马大学生命科学
Methods In this observational study, we prospectively performed short-read shotgun metagenomics analysis as a second-line test (in cases of negative first-line test or when the symptoms were not fully explained by initial positive results) or as a first-line test in life-threatening situations requiring urgent non-targeted pathogen identification at the Necker-Enfants Malades Hospital (Paris, France).包括所有样本类型,临床适应症和患者人群。样品伴随着由高级临床医生或病理学家填写的强制性表格,该临床临床水平的可疑感染(定义为高或低)。我们使用多元逻辑回归中的优势比(ORS)评估了与MNGS病原体检测相关的变量(性别,年龄,免疫状态,感染的初始怀疑,指示和样本类型)。使用特定的PCR或培养技术进行了其他研究,以确认MNGS的阳性结果,或者尽管MNG造成阴性,但传染性怀疑何时特别高。
机载微生物群落虽然经常因生物量低而挑战研究,但在公共卫生和病原体传播中起着至关重要的作用。通过shot弹枪宏基因组学,这项研究利用面罩和飞机舱滤清器的非侵入性空气采样来研究具有频繁人类相互作用的环境中的微生物多样性,包括医院和飞机。开发了全面的抽样和分析工作流程,并结合了环境和富集方案,以增强微生物DNA恢复和多样性分析。尽管存在生物量的局限性,但允许成功鉴定407种的优化提取方法,其中包括cutibacterium痤疮,表皮葡萄球菌,hankookensis和Radiotolerans甲基杆菌。富集加工导致更大的元基因组组装基因组(MAG)恢复和较高的抗菌耐药基因(ARG)鉴定。这些发现突出了高占用公共场所中ARG的存在,这表明监测的重要性以及在这种环境中减轻空气传播风险的潜力。这项研究证明了将环境和富集采样相结合以捕获狭窄空间中综合微生物和ARG概况的实用性,从而为在公共卫生环境中增强病原体监测提供了框架。
摘要肠道轴在呼吸道感染期间至关重要,包括流感病毒(IAV)感染。在本研究中,我们使用了高分辨率的shot弹枪元基因组学和靶向代谢组学分析来表征小鼠肠道肠道微生物群的组成和元倾斜度中与流感相关的变化。我们观察到7天(d)7天的分类级变化,包括明显减少乳酸杆菌科和双歧杆菌科的成员,以及akkermansia muciniphila的丰度增加。在D14上,某些物种持续存在扰动。宏基因组数据的功能尺度分析揭示了几种代谢途径的短暂变化,尤其是导致短链脂肪酸(SCFA),多胺和色氨酸代谢物的瞬时变化。对血清的定量靶向代谢组学分析揭示了特定类别的肠道微生物群代谢产物的变化,包括SCFAS,三甲胺,多胺和含吲哚的色氨酸代谢物。在D7上观察到吲哚-3-丙酸(IPA)血液水平的明显降低。微生物群相关的代谢产物的变化与分类单元丰度和疾病标志物水平的变化相关。特别是,IPA与一些乳酸杆菌科和双歧杆菌科(limosilactobacillus reuteri,Animalis limosilactobacillus)正相关,并与细菌M7,病毒载量和炎症标志物呈负相关。在患病动物中补充IPA可减少病毒载量,并降低局部(肺)和全身炎症。用靶向IPA产生细菌的抗生素治疗感染前的抗生素,从而增强了病毒载量和肺部炎症,这是补充IPA抑制的作用。这种综合的宏基因组 - 代谢组分分析的结果强调了IPA是导致流感结果的重要因素和潜在的疾病严重性生物标志物。
宏基因组学可用于监测抗生素耐药基因的扩散(ARGS)。args在诸如分解和纸牌原理等数据库中发现的源自可培养和致病性细菌,而来自不可培养和非病原细菌的ARG仍然研究了。功能元素基于表型基因的选择,并且可以从具有与已知ARGS共享的潜在低认同性的不可培养的Bacteria中识别出ARG。在2016年,创建了ResfinderFG V1.0数据库,以从功能性研究中收集ARG。在这里,我们介绍了数据库Resfinderfg v2.0的第二个范围,该v2.0可在基因组流行语Web服务器中心(https://cge.food.dtu.dtu.dk/ services/ resfinderfg/)中获得。它包括3913 ARG,由50个精心策划的数据集的功能性宏基因组学鉴定。我们评估了与肠道,土壤和水(海洋 +淡水)全球微型基因目录(https://gmgc.embl.de)相比,我们评估了其检测ARG的潜力。res- finderfg v2.0允许检测未检测到使用其他数据库检测的ARG。这些包括对β-甲酰胺,环素,苯酚,糖肽 /环烯烯和甲氧苄啶 /磺胺酰胺的抗性。因此,ResfinderFG v2.0可用于识别与常规数据库中发现的ARG,从而改善了抗抗性的描述。