在获得功能网络后,需要定位相关的重要脑区并解释其主要脑功能,这将极大地帮助研究人员探索结果。由于研究人员一直在研究基于微观结构、宏观结构和连接特征的脑区划分,我们的工具箱通过计算经典脑图谱的脑区与每个功能网络中激活区域的重叠度来识别每个功能网络中的相关脑区。自动解剖标记(AAL)(Tzourio-Mazoyer 等人,2002 年)、自动解剖标记 3(AAL3)(Rolls、Huang、Lin、Feng 和 Joliot,2020 年)和脑网络组图集(BNA)(Fan 等人,2016 年)包含在当前版本中用于计算。这些图谱中的每一个都可用于提取每个网络最相关的几个区域。我们的工具箱提供了一个
分子结构学的本质在于通过合理利用非共价力来定制设计和构建分子组装,以构建具有新特性和功能的理想结构。这种设计非共价系统的概念使我们能够构建用于生物和非生物应用的功能结构,同时加强我们对受控分子组装技术的理解。在这种情况下,生物分子或具有内置分子识别信息的仿生辅助物可以指导功能模块单元的受控分子组装,以构建纳米、微和宏观结构。环二肽 (CDP) 是环肽的最简单形式,由于具有众多组装和功能特性,可以作为分子构建块设计中的功能核心和辅助物。CDP 是主要的副产品,人们一直在努力抑制或防止肽合成过程中的副产品形成。在我们的实验室中,我们承担了将 CDP 升级为具有仿生和生物医学应用的主流产品的任务,这被称为 CDP 结构学。在本次演讲中,我将介绍 CDP 架构及其潜在应用。
1 执行摘要 我们的目标是开发 LETO(月球尘埃减缓静电 μ 纹理覆盖层),这是一种具有多种特性和功能的材料,专门用于月球环境的探索。本研究中实际生产的材料在真正的月球南极环境中性能不佳。然而,这项研究的结果可能为更大的研究工作提供支持,其中可以调整各个组件以允许真正融入其研究中。我们的设计表明,外层或“覆盖层”必须包含几个设计元素才能发挥作用。它应该具有具有纳米微尺度特征的表面结构,我们称之为微结构,它应该具有具有厘米级特征的预定折叠图案,我们称之为宏观结构,并且它应该连接到静电发生器,通过静电发生器可以促进表面充电程度。设计伴随着这三个组件的一些基础研究。本文将描述实现这三个目标的单独努力,并详细解释将它们结合在一起的额外挑战。我们对每个设计组件的可行性进行了多次观察。我们认为,LETO 的加入将有利于 Artemis 任务,并且可以以多种方式使用。
语言评估在诊断和治疗因神经源性疾病(无论是发育性还是后天性)引起的言语、语言和交流障碍患者方面起着至关重要的作用。然而,目前的评估方法是手动的、费力的、耗时的管理和评分方法,给患者带来了额外的压力。为了应对这些挑战,我们开发了 Open Brain AI (https://openbrainai.com)。这个计算平台利用创新的人工智能技术,即机器学习、自然语言处理、大型语言模型和自动语音到文本转录,自动分析多语言口语和书面语音。本文讨论了 Open Brain AI 的发展、人工智能语言处理模块以及话语宏观结构和微观结构的语言测量。快速自动的语言分析减轻了临床医生的负担,使他们能够简化工作流程,并分配更多的时间和资源来指导患者护理。Open Brain AI 是免费访问的,使临床医生能够进行关键数据分析,并将更多的注意力和资源放在治疗和治疗的其他关键方面。
抽象目的 - 本文旨在对激光工程净成型(镜头)过程进行全面审查,以期为读者提供对金属零件的可控且固定的构建参数的深入了解。作者讨论了过程参数之间的效果和相互作用,包括:激光功率,扫描速度和粉末进料速率。此外,作者显示了过程参数之间的相互作用在实现所需的微观结构,宏观结构,几何精度和机械性能方面至关重要。设计/方法论/方法 - 在本手稿中,作者回顾了当前的研究,研究了使用镜头工艺制造过程时对最终产品的过程及其对最终产品的影响。作者还讨论了这些参数如何与重要的构建方面相关联,例如熔体池尺寸,孔隙率和几何精度的体积。发现 - 作者得出的结论是,研究大大丰富了对镜头构建过程的理解,但是,许多研究还有待完成。重要的是,作者表明,迄今为止,有许多详细的理论模型可以预测沉积的最终属性,但是,基于输入参数的同步行为,需要更多的研究来允许对标准工业零件的构建过程进行合理的预测。独创性/价值 - 本文打算提出有关可能促进该镜头技术有效性的可能研究领域的问题。
已确定淀粉样β蛋白 (Aβ) 沉积、神经纤维缠结 (tau) 和脑萎缩等病理变化在痴呆症发生前十年就已出现。5 因此,听力障碍可能与导致痴呆症发生的病理变化有关。由于听觉皮层位于颞叶,因此颞叶皮层可能是听力障碍患者脑区中萎缩最严重的区域。感觉剥夺假说认为长期听觉剥夺会将认知资源重新分配到听觉认知上。因此,除了颞叶皮层之外,听力障碍可能与与一般认知过程相关的皮层萎缩有关。已证实神经影像生物标志物可反映整个痴呆症病程中大脑的病理生理过程。 6、7 迄今为止,已有少数研究调查了听力障碍与脑灰质 (GM) 宏观结构大小和白质 (WM) 微观结构完整性之间的关联,但这些研究中很少有脑区和 WM 束被一致报道与听力障碍有关。8 – 14 此外,由于脑脊液 (CSF) 中的 A β 和 tau 蛋白与脑中的 A β 和 tau 病理密切相关,有几项研究探讨了听力障碍与 CSF 蛋白之间的关联,以揭示听力障碍在病理学中的影响。同样,由于样本量的限制,得到了不一致的结果。15、16
致编辑:我们饶有兴趣地阅读了 Freund 等人的研究。1(Freund BE、Greco E、Okromelidze L 等人。基于成像的丘脑前核深部脑刺激编程的临床结果。J Neurosurg。2022 年 9 月 9 日在线发表。doi:10.3171/2022.7.JNS221116)。作者发现,深部脑刺激器接触点与丘脑前核-乳头丘脑束 (ATN-MMT) 连接处的接近程度决定了深部脑刺激 (DBS) 对药物难治性癫痫的疗效。1 Freund 等人的研究。1 和文献中其他人的研究 2 具有重要意义,因为它们代表了对仅刺激宏观结构就足够的传统观点的一种背离。 3 基于 Freund 等人的研究结果,如果 DBS 接触点与 ATN-MMT 连接点的接近程度决定疗效 1 且 MMT 是 ATN 的主要输入,1,4 那么 ATN、MMT 和 ATN-MMT 连接点的功能完整性是否也决定疗效(图 1)?如果是,我们假设 ATN、MMT 和 ATN-MMT 连接点的功能完整性可用于选择接受 ATN-MMT DBS 治疗药物难治性癫痫的患者。可以使用功能性 MRI 等先进成像方式研究 ATN、MMT 和 ATN-MMT 连接点的功能完整性。5 Freund 等人和其他人的发现 1,2 为未来评估 DBS 在不同亚结构中的疗效的随机对照试验奠定了基础。
与大多数生物体一样,植物也具备复杂而精巧的分子机制来应对不断变化的环境。在翻译后修饰 (PTM) 中,小肽(如泛素或 SUMO(小泛素相关修饰物))的结合能够快速有效地适应各种非生物和生物胁迫条件。SUMO 化过程涉及使用类似于泛素化的分级多酶级联将 SUMO 共价附着到目标蛋白上(图 1)[ 1 ]。这种可逆修饰可导致构象变化、改变蛋白质相互作用并影响修饰蛋白质的整体功能,包括稳定性、亚细胞定位和转录调控。除了与目标蛋白结合之外,SUMO 还能够与许多含有 SUMO 相互作用基序 (SIM) 的蛋白质非共价相互作用。将相同或不同蛋白质中的 SUMO 化位点与 SIM 相结合,有助于形成蛋白质宏观结构,从而通过将其他 SUMO 靶标募集到有利于 SUMO 化的环境中来增强 SUMO 化 [1]。拟南芥基因组含有 8 个 SUMO 基因,但只有 4 个得到表达(AtSUMO1/2/3/5)。几乎相同的 AtSUMO1/2 是 SUMO 原型,因为它们是哺乳动物 SUMO2/3 的最近同源物。SUMO 蛋白在发育和防御过程中的时空表达和功能有所不同 [2]。植物通常表达高水平的高度保守的 SUMO 异构体(AtSUMO1/2)和至少一种弱表达的非保守异构体(AtSUMO3/5)。
扩散MRI(DMRI)是一种强大的方法,通常用于研究大脑神经途径的微观结构和几何形状。它测量了活大脑中水扩散的特征1,2。由于使用DMRI检测到的扩散fro纤维沿着大脑的神经途径限制了水的扩散,因此可以重建大脑主要纤维捆的3D几何形状。在退化性疾病中发生的病理过程,例如神经元和髓磷脂的丧失以及炎症,会影响组织扩散特性,以改变组织微结构和途径几何形状。因此,DMRI对标准解剖学MRI无法检测到的病理过程敏感。各向异性和扩散性测量是表征白质(WM)微结构特性的最广泛使用的措施。这些扩散指标已在退化,开发和精神病疾病中进行了研究3。随着许多类型的分子病理学影响DMRI信号,包括大脑中的淀粉样蛋白和Tau蛋白的积累,大量文献集中在绘制WM异常,这些疾病在神经退行性疾病的发展中产生,例如阿尔茨海默氏病(Alzheimer's Panties)等神经退行性疾病(Alzheimer's Diseation(Alzheimer)4-6,4-6,4-6,Parkinson's Parkinson's Parkinson's Parkinson's Disen和其他Dementias。Thomopoulos等。5检查了四个标准DTI指标,以及它们与痴呆症的严重程度如何在730名患者中作为阿尔茨海默氏病神经成像倡议(ADNI)的一部分进行了扫描。一项后续研究6在皮质灰质中检查了DMRI指标。Schilling等。他们发现,使用临床痴呆评级(CDR)等级评估平均扩散率(MD)与年龄和痴呆症的严重程度有关。他们发现皮质DMRI指标介导了AD的脑脊液(CSF)标记与延迟逻辑记忆性能之间的关系,这通常在早期AD中受到损害。较低的CSFAβ142和较高的PTAU181与皮质DMRI测量相关,反映了限制扩散和更大的扩散率。 AD病理学与扩散指标之间的这种明显联系已经增强了对使用DMRI研究AD的兴趣。即使这样,标准分析方法通常会将微结构指数降低到相对较大的感兴趣区域的汇总。这些局限性刺激了以较小的解剖量表为8,9的疾病对疾病对脑微观结构的影响。dTI的指标,例如分数各向异性(FA),径向扩散率(RD)和轴向扩散率(AXD)易受纤维交叉点的敏感性 - 单个voxel 11和任何个人数字中的多填充群体的存在所影响。虽然已经提出了基于体素的基于氧化的12和横向测量法方法来进一步改善受试者间的比对并有助于解决交叉纤维,但仍在体素水平上计算了许多微观结构措施。此外,当前的术语方法通常使用单变量方法分别计算每个捆绑包的组统计信息,而无需考虑大脑中相交纤维的复杂模式。拖拉术数据也可用于研究WM束的宏观结构或“形状”特性。13个计算的捆绑束指标与大脑WM的年龄相关的宏观结构变化的异质模式在大脑WM中的异质模式相比,与更均匀的微结构变化模式相比。最近的一项研究14发现,使用基于氧化的分析指标,AD的早期与TAU相关的WM变化是宏观的。据我们所知,没有任何工作研究WM微结构和宏观结构如何在神经退行性条件下共同改变了使用Tractometry方法等神经退行性条件,我们在当前的研究中解决了这一问题。在这项研究中,我们提出了宏观结构的规范术(MINT),以共同模拟微观结构的测量和纤维束几何形状的同时变化,并使用一种称为变异自动装编码器(VAE)的深度学习方法。当用作规范模型时,VAE可以编码健康对照中扩散指标的正常变异性的解剖模式。这个多元模型集成了多个互补的微观结构特征,并说明了不同DMRI指标之间的统计协方差以及与空间相关性。我们将薄荷衍生的微型与DTI的传统单变量措施进行了比较,并研究了在大型多站点样本中,在轻度认知障碍(MCI)和痴呆症中WM异常的特征模式。我们还研究了WM异常与痴呆症严重程度的临床指标有关。由于有兴趣确定用于检测和跟踪痴呆症的最佳微结构指标,因此我们还通过评估其对痴呆症的敏感性来对DTI指标进行排名。在痴呆症和MCI中可视化WM微结构异常之后,在两个不同的祖先和人口统计组中,我们研究了它们与整体裂纹几何形状的关系,并指出可以通过微观结构和形状的联合统计模型来解决的解释的歧义。
摘要。在水中,透明度似乎是一种理想的隐藏策略,各种透明的水生生物就是明证。相比之下,除了昆虫翅膀之外,陆地上几乎没有透明度,而且关于其功能和进化的知识很少,研究很零散,没有比较的视角。鳞翅目(蝴蝶和蛾)是研究陆地透明度的一个杰出群体,因为它们通常拥有覆盖着彩色鳞片的不透明翅膀,这是一项关键的多功能创新。然而,许多鳞翅目物种已经进化出部分或完全透明的翅膀。在物理学和生物学的交界处,本研究调查了 123 种鳞翅目物种(来自 31 个科)的翅膀透明度的结构基础、光学特性以及与视觉检测(隐藏)、体温调节和防紫外线相关的生物学相关性。我们的结果表明,透明度可能已经独立进化了多次。透光效率主要取决于透明翅膀的微结构(鳞片的形状、插入位置、颜色、尺寸和密度)和宏观结构(透明翅膀面积、物种大小或翅膀面积)。微结构特征、鳞片的密度和尺寸在其进化过程中紧密相连,并根据鳞片的形状、插入位置和颜色受到不同的限制。透明度似乎与隐蔽性高度相关,且随尺寸而变化。透明度和纬度之间的联系与透明度在体温调节中的生态相关性相一致,但与防紫外线辐射无关。总之,我们的研究结果为推动陆地透明度进化的物理和生态过程提供了新的见解,并强调透明度是一种比以前认为的更为复杂的着色策略。