。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年10月23日。 https://doi.org/10.1101/2023.10.20.20.563389 doi:Biorxiv Preprint
b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。
运动刻板行为在患有自闭症谱系障碍 (ASD)、智力障碍或感觉剥夺的儿童以及正常发育的儿童(“原发性”刻板行为,pCMS)中很常见。运动刻板行为的确切病理生理机制尚不清楚,尽管已经提出了遗传病因。在本研究中,我们对 129 个患有 pCMS 的亲子三人组和 853 个对照三人组(经过质量控制后为 118 个病例和 750 个对照)进行了全外显子组 DNA 测序。我们报告了 pCMS 与对照相比新生预测损伤性 DNA 编码变异的发生率增加,确定 KDM5B 为高置信度风险基因,并估计有 184 个基因赋予风险。pCMS 患者中含有新生损伤性变异的基因与 Tourette 综合征、ASD 中的基因以及刻板行为评分高与低的 ASD 患者中的基因有显著重叠。对这些 pCMS 基因表达模式的探索性分析发现,在胎儿中期发育早期,这些基因在皮质和纹状体中聚集。探索性基因本体论和网络分析突出了钙离子转运、去甲基化、细胞信号传导、细胞周期和发育中的功能趋同。对 pCMS 三重奏的持续测序将识别出其他风险基因,并为跨诊断界限的刻板生物学机制提供更深入的见解。
十多年前,美国国家安全空间战略警告说,空间将变得更加“拥挤,竞争和竞争”。 3该警告被证明是有先见之明的,但美国政府做得不足以适应这一现实。美国太空系统的主要部分仍未被指定为关键基础架构,也没有受到指定所需的关注或资源。当今的大多数太空系统都是在空间是冲突中的庇护所的前提下开发的,但事实并非如此。俄罗斯和中国的威胁正在增长。这两种专制权力都将美国和合作伙伴太空系统放在了十字准线中,如他们对反卫星(ASAT)能力的测试所证明的那样。美国需要采取更一致,更连贯的方法来实现有关太空系统基础设施的风险管理和公私协作。
靶向蛋白质降解 (TPD) 代表了一种有效的化学生物学范例,它利用细胞降解机制以药理学方式消除特定的目标蛋白质。尽管已发现多种 E3 连接酶可促进 TPD,但仍迫切需要使可用于此类应用的 E3 连接酶库多样化。这种扩展将扩大潜在蛋白质靶标的范围,以适应具有不同亚细胞定位和表达模式的靶标。在本研究中,我们描述了一种基于 CRISPR 的转录激活筛选,重点是人类 E3 连接酶,目的是识别可以促进异双功能化合物介导的靶标降解的 E3 连接酶。这种方法使我们能够解决在缺乏所需 E3 连接酶或所需 E3 连接酶水平较低的特定细胞系中研究候选降解分子的局限性。通过这种方法,我们确定了一种候选的蛋白水解靶向嵌合体 (PROTAC),22-SLF,当 FBXO22 基因转录被激活时,它会诱导 FKBP12 的降解。22-SLF 以 FBXO22 依赖的方式在多种癌细胞系中诱导内源性 FKBP12 的降解。后续的机制研究表明,22-SLF 与 FBXO22 中的 C227 和/或 C228 相互作用以实现目标降解。最后,我们通过有效降解另一种内源性蛋白质 BRD4 证明了基于 FBXO22 的 PROTAC 的多功能性。这项研究揭示了 FBXO22 是一种 E3 连接酶,能够通过亲电 PROTAC 支持配体诱导的蛋白质降解。我们开发的平台可以通过识别促进小分子诱导或内源性蛋白质降解的 E3 连接酶来轻松应用于阐明蛋白质降解途径。
抗菌素耐药性的出现迫切需要针对致命细菌物种的13种治疗策略。在这项研究中,我们研究了激酶抑制剂作为宿主定向疗法(HDTS)的14个潜力,用于打击由细胞内细菌引起的15种传染性疾病,特异性沙门氏菌Typhimurium(STM)和16个结核病结核菌(MTB)。,我们使用18个基于人类细胞系和原发性19个巨噬细胞的STM和MTB的细胞内感染模型,使用18个已发表激酶抑制剂集(PKIS1和PKIS2)筛选了来自两个已发表激酶抑制剂集(PKIS1和PKIS2)的17个已知靶标轮廓(PKIS1和PKIS2)的17个已知靶标轮廓。此外,使用20种斑马鱼胚胎感染模型评估了化合物的体内功效。我们的激酶抑制剂筛查确定了STM的14个命中化合物21和MTB的19种命中化合物,这些化合物有效地针对细胞内细菌,宿主细胞有22种无毒。进一步的验证实验表明,大多数23个STM HIT化合物的高疗效以及它们在细胞系24和原发性巨噬细胞中完全清除细胞内感染的能力。从这些结构相关的STM HIT化合物,25 GSK1379738A和GSK1379760A中,在感染的26个斑马鱼胚胎中对STM表现出显着的有效性。针对细胞内MTB的活性化合物包括27种莫菲诺 - 米达佐/三唑 - 吡啶酮酮,专门针对激酶PIK3CB和28个PIK3CD,以及2-氨基苯二甲咪唑以及靶向BLK,ABL1和TRKA。31总体而言,这项研究29提供了对作用于宿主 - 病原体界面作用的关键激酶靶标,30种新型激酶抑制剂作为细胞内细菌感染的潜在HDT。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年7月28日。; https://doi.org/10.1101/2023.07.26.550731 doi:biorxiv Preprint
医院环境是通过手部与硬表面和纺织品的直接和间接接触传播医疗保健相关感染的重要介质。在本研究中,使用微生物培养方法和 16S rDNA 测序对瑞典两个护理病房中频繁接触部位(包括纺织品和硬表面)的细菌进行了鉴定。在一项横断面研究中,鉴定了 176 个频繁接触的硬表面和纺织品,并使用微生物培养进一步分析以量化总需氧菌、金黄色葡萄球菌、艰难梭菌和肠杆菌。使用 16S rDNA 测序进一步分析了 26 个样本的细菌种群结构。研究显示,与硬表面(每小时 2.2 次)相比,手部与纺织品直接接触的频率更高(每小时 36 次)。硬表面符合需氧菌 5 CFU/cm 2 和链球菌 1 CFU/cm 2 的推荐标准。金黄色葡萄球菌(分别为53%和35%)的发生率高于纺织品(分别为19%和30%)(P=0.0488)。纺织品上的细菌属数量高于硬表面。纺织品中最具代表性的菌属是葡萄球菌(30.4%)和棒状杆菌(10.9%),而硬表面中最具代表性的菌属是链球菌(13.3%)。很大一部分纺织品不符合清洁度标准,再加上与硬表面相比细菌多样性更高,这些都表明纺织品是细菌的储存器和细菌传播的潜在风险媒介。然而,由于研究中发现的大多数细菌属于正常菌群,因此不能得出纺织品和硬表面是医院相关感染来源的结论。
1,Karolinska Institute医学系血液学和再生医学中心,以及Karolinska Institute,Karolinska Institute,Karolinska University Hospital,Sweden,Karolinska Institute,Karolinska Institute,Karolinska Institute,2综合有氧代谢中心; 3瑞典乌普萨拉大学医院医学科学系血液学系; 4瑞典斯德哥尔摩Karolinska Institute肿瘤科学系; 5赫尔辛基大学血液学研究部门,赫尔辛基大学,赫尔辛基大学医院综合癌症中心,芬兰赫尔辛基; 6芬兰赫尔辛基大学临床化学与血液学系转化免疫学研究计划; 7 ICAN Digital Precision Cancer Medicine旗舰,芬兰赫尔辛基; 8瑞典斯德哥尔摩Karolinska大学医院血液学系; 9瑞典斯德哥尔摩Karolinska Institute医学院Solna; 10瑞典斯德哥尔摩Karolinska大学医院临床免疫学和输血医学系; 11瑞典隆德大学隆德大学分子血液学系;瑞典林克平大学的林克平大学临床与实验医学系
酶在介导活生物体的各种生化过程中起着至关重要的作用。它们以高效率和选择性催化特定的化学反应的能力使它们成为治疗干预的有吸引力的目标[1]。靶向酶作为药物靶标,近年来由于它们参与了各种疾病,包括癌症,代谢性疾病和传染病[2]。本综述概述了针对酶作为药物靶标领域的最新进步和未来观点。靶向酶背后的基本原理在于它们在关键生物学途径中的核心作用。酶参与基本过程,例如细胞信号,代谢和DNA复制,使其成为调节疾病相关过程的有吸引力的目标[3]。 通过特别抑制或调节关键酶的活性,可以破坏异常的生化途径并恢复正常的细胞功能[4]。 近年来在酶抑制剂的发现和发展方面取得了显着进步。 创新策略,包括基于结构的药物设计,虚拟筛查,高通量筛选和基于碎片的方法,已成为识别和优化选择性抑制酶活性的小分子的强大工具[5]。 这些方法可以设计有效和特定的酶抑制剂,为有效的治疗干预铺平了道路。 了解酶功能,调节和催化机制对于成功的药物靶向至关重要[6]。酶参与基本过程,例如细胞信号,代谢和DNA复制,使其成为调节疾病相关过程的有吸引力的目标[3]。通过特别抑制或调节关键酶的活性,可以破坏异常的生化途径并恢复正常的细胞功能[4]。近年来在酶抑制剂的发现和发展方面取得了显着进步。创新策略,包括基于结构的药物设计,虚拟筛查,高通量筛选和基于碎片的方法,已成为识别和优化选择性抑制酶活性的小分子的强大工具[5]。这些方法可以设计有效和特定的酶抑制剂,为有效的治疗干预铺平了道路。了解酶功能,调节和催化机制对于成功的药物靶向至关重要[6]。详细了解酶结构,活性位点体系结构和底物结合相互作用的知识为具有高亲和力和特异性抑制剂的设计提供了见解。此外,研究酶的动力学和动力学有助于阐明最佳策略来调节酶活性,从而指导有效的治疗干预措施的发展。在特定疾病环境中靶向酶抑制的应用已显示出很大的希望[7]。例如,靶向激酶在癌症治疗中已彻底改变了治疗方法,从而导致了非常成功的激酶抑制剂的发展。同样,蛋白酶抑制剂已被证明有效地对抗病毒感染,而靶向代谢酶为代谢性疾病提供了潜在的治疗方法[8]。然而,需要解决诸如耐药性和非靶向影响之类的挑战,以最大程度地提高靶向酶的疗法的临床益处[9]。个性化医学方法,考虑了个体的患者特征和遗传变异,在