[2] Giridharan,Sumitra K. Prof MK。“使用磁场定向控制 (FOC) 降低转矩脉动 - BLDCM 与 PMSM 的比较。” [3] Rafaq,Muhammad Saad、Will Midgley 和 Thomas Steffen。“永磁同步电机转矩脉动最小化技术的最新进展回顾。” IEEE 工业信息学学报 (2023)。 [4] Yashvi N. Parmar,“永磁同步电机磁场定向控制的硬件实现”,国际创造性研究思想杂志 (IJCRT) www.ijcrt.org,第 6 卷,第 2 期,2018 年 4 月,ISSN:2320-2882。 [5] Gupta,Ashish 和 Sanjiv Kumar。“用于 asd 的三相空间矢量 pwm 电压源逆变器分析。”国际新兴技术与先进工程杂志 2.10 (2012):163-168。[6] Yusivar, Feri 等人。“永磁同步电机磁场定向控制的实现。”2014 年国际电气工程与计算机科学会议 (ICEECS)。IEEE,2014 年。[7] Jacob, Jose 和 A. Chitra。“空间矢量调制多电平逆变器供电 PMSMdrive 的磁场定向控制。”Energy Procedia 117 (2017):966-973。[8] Faturrohman, Rifal、Nanang Ismail 和 Mufid Ridlo Effendi。“基于 DSP tms320f28027f 的无刷直流电机速度控制系统。”2022 年第 16 届国际电信系统、服务和应用会议 (TSSA)。 IEEE,2022 年。[9] K. Kolano,“PMSM 电机矢量控制的新方法”,载于 IEEE Access,第 11 卷,第 43882 43890 页,2023 年,doi:10.1109/ACCESS.2023.3272273。[10] P ELLEGRINO、G IANMARIO 等人,“P ERFORMANCE
Si-硅、SiC-碳化硅、GaN-氮化镓、MPC-模型预测控制、PSO-粒子群优化、IFOC-间接磁场定向控制、DTC-直接扭矩控制、DSP-数字信号处理、FPGA-现场可编程门阵列
Si-硅,SiC-碳化硅,GaN-氮化镓,MPC-模型预测控制,PSO-粒子群优化,IFOC-间接磁场定向控制,DTC-直接扭矩控制,DSP-数字信号处理,FPGA-现场可编程门阵列
EPC9147B 是一款接口板,可接受 TI LAUNCHXL 开发套件(例如 F28379D 或 F28069M,该套件具有 TI C2000 微控制器),并连接到兼容的三相 eGaN® FET/IC 电机驱动逆变器板,如右图所示。该接口板允许用户利用现有的 TI InstaSPIN_UNIVERSAL GUI 资源以及 EPC 专用文件来编程控制器板,并使用无传感器磁场定向控制和空间矢量脉冲宽度调制来控制由 eGaN FET/IC 三相逆变器供电的电机。
本文档介绍了一种使用 TMS320C24x 控制永磁同步电机的解决方案。这种新型 DSP 系列能够以经济高效的方式设计无刷电机智能控制器,从而实现增强的操作,包括更少的系统组件、更低的系统成本和更高的性能。所提出的控制方法依赖于磁场定向控制 (F.O.C.)。该算法可在各种速度下保持效率,并通过直接从转子坐标控制磁通量来考虑瞬态相位的扭矩变化。本报告介绍了不同的增强算法。所提出的解决方案包括抑制相电流传感器的方法和使用滑模观测器进行无速度传感器控制。
• 电调与电机一体化设计,车架布局布线更加简洁便捷。 • 攀岩车动力系统采用FOC(磁场定向控制)驱动方式,低速扭力强劲,优于标准无刷驱动,整体手感优于有刷驱动。 • 系统效率高,发热量小,有效延长运行时间,电机运转更安静柔和。 • 整机防护等级达到IP66,全工况运行无忧。 • 智能扭矩输出与速度闭环控制,操控得心应手。 • 主动拖拽制动力调节,上坡时提供超强抓地力。 • 内置强效开关模式BEC,持续电流高达4A,支持6V/7.4V切换,可驱动大扭矩高压舵机。 • 多重保护功能:电池低压保护、过热保护、油门丢失保护、锁死保护。 • 支持LED、LCD两种G2/Pro编程盒设置电调参数,设置参数更加便捷。
在大脑发育的关键时期,神经元的可塑性会在整个生命过程中保持下去。因此,可塑性是大脑发育和学习的基础。可塑性可以通过阅读、音乐、艺术、体育、学习等认知要求高的活动来刺激。与更传统的方法(包括在临床环境中)相比,大脑学习新事件的能力可以得到进一步刺激或增强,这要归功于涉及反复执行精确设计的行为协议的特定训练。这些行为协议通常源自实验室环境,它们在开放环境中的可用性通常通过将它们嵌入到有趣的资源(包括所谓的严肃游戏)中来提高。这些行为协议的一个子系列将行为训练与对生理特征(例如心率(生物反馈)或皮质产生的信号(神经反馈))的实时定向控制相结合,以便参与者可以学会将这种反馈与他们正在产生的行为联系起来。具体来说,神经反馈是一种基于向参与者(无论是患者还是健康志愿者)提供在产生特定行为过程中的大脑功能信息的方法(图 1)。反馈给参与者的这些信息可以是与感兴趣的行为有因果关系的特定大脑区域的直接激活水平,也可以是反映更具体大脑功能的更精细的信息,例如功能连接测量或解码的大脑状态或认知信息。神经反馈已被证明可以触发积极的行为结果,例如缓解广告症状或改善特定的认知功能。这些积极的行为结果依赖于大脑可塑性机制和受试者终生学习的能力。因此,神经反馈被认为是一种