摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
铝合金在增材制造中的应用因其先进的几何形状和轻量化应用而备受关注。在定向能量沉积中,粉末原料用激光束处理,这提供了很高的工艺灵活性。然而,由于铝合金对氧化和孔隙率的敏感性,粉末原料在储存或回收后老化仍然是一项根本挑战。为了研究这些影响,AlSi10Mg 粉末批次在不同条件下老化,并通过定向能量沉积进行处理。结果表明,粉末老化不会显著改变颗粒尺寸或形态,但它会在粉末中引入更多的氧和氢。颗粒的氧化降低了粉末对激光束的吸收率,增加了熔池的润湿性,从而影响了轨迹几何形状。在从老化粉末中沉积的材料中观察到 3.5 到 4.2 倍的孔隙率,这很可能是由于老化粉末中氢含量增加而导致的氢孔。用老化粉末制造的部件的拉伸性能显示屈服强度降低 19.0%,极限强度降低 14.2%,伸长率提高 99.2%,这很可能是由于微观结构变粗和孔隙率增加造成的。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
铝合金在增材制造中的应用因其先进的几何形状和轻量化应用而备受关注。在定向能量沉积中,粉末原料用激光束处理,这提供了很高的工艺灵活性。然而,由于铝合金对氧化和孔隙率的敏感性,粉末原料在储存或回收后老化仍然是一项根本挑战。为了研究这些影响,AlSi10Mg 粉末批次在不同条件下老化,并通过定向能量沉积进行处理。结果表明,粉末老化不会显著改变颗粒尺寸或形态,但它会在粉末中引入更多的氧和氢。颗粒的氧化降低了粉末对激光束的吸收率,增加了熔池的润湿性,从而影响了轨迹几何形状。在从老化粉末中沉积的材料中观察到 3.5 到 4.2 倍的孔隙率,这很可能是由于老化粉末中氢含量增加而导致的氢孔。用老化粉末制造的部件的拉伸性能显示屈服强度降低 19.0%,极限强度降低 14.2%,伸长率提高 99.2%,这很可能是由于微观结构变粗和孔隙率增加造成的。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
•零件验证过程是一份文档,描述了过程,构建布局,无损测试,破坏性测试和样品提取地点以及对零件验证构建的任何特定应用程序测试。•必须在执行零件验证构建和相关测试之前批准零件验证过程。•零件验证构建是使用批准的DED程序产生的牺牲构建。此构建包含在单个生产版本中生产的所有零件和见证优惠券。•捕获对材料性能的任何不可预见的几何影响,并允许特定于组件的测试(例如,爆发测试)。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
混合增材制造 (AM) 是指两种金属 AM 技术的组合:粉末床熔合 (PBF) 材料沉积和定向能量沉积 (DED) 附加构建。本研究重点研究了混合 AM 生产过程中 PBF 和 DED 相对沉积方向的不同特性。将混合 AM 制备的样品(即混合样品)的特性与 PBF 或 DED 制备的样品的特性进行了比较。PBF 沉积物的微观结构以铁素体为主,局部可观察到非常细小的残余奥氏体。相反,DED 沉积物的微观结构中均匀形成板条马氏体和残余奥氏体。两种过程中微观结构的不同归因于冷却速度的差异。在 DED 沉积物中,由于残余奥氏体分数高,显微硬度显著降低。然而,在混合样品中,由于长期沉积的时效热处理,HAZ 中的显微硬度迅速增加。 PBF和DED样品的主要磨损机制分别是氧化磨损和塑性变形。
ldews提出了在测试或发射武器时产生的高,随机热能(废热)输出的要求。在本研究中提出了两组热能输出。第一组是“近期” LDEW的特征,预计将在未来10年内实现。第二组热输出表征了推测的“未来” LDEW。这代表了近期LDEW技术的预期扩展,以在10年> 20年范围内生产更高的激光武器。由于今天的海军平台可以运行30多年,因此必须考虑今天必须考虑将来的更高功率LDEW系统的潜力,以了解和减轻当前平台冷却系统设计所施加的可伸缩性约束。3.1近期LDEW热需求;
1. Yu, JH, Choi, YS, Shim, DS 和 Park, SH, Optics & Laser Technology, 2018, 106, pp.87-93. 2. Kanishka, K. 和 Acherjee, B., Journal of Manufacturing Processes, 2023, 89, pp.220-283.
组织面临与材料消费和生产有关的复杂资源管理挑战。面临资源限制,有弹性的企业寻求替代当前“采用,制造,处置”经济模型的替代方案。转向基于设计废物和使用材料使用的循环经济模型有助于创造新的经济和就业机会,并通过改善资源使用以增加价值和提高弹性来提供环境利益。