在基于激光的金属粉末的定向能量沉积中,使用优化参数可以使用无缺陷的材料,而与这些优化的参数不同,通常会导致高孔隙率,高稀释度,高稀释度或不同的轨道几何形状。构建复杂的地理网格时的主要挑战之一是沉积的几何和热条件正在不断变化,这需要在生产过程中调整过程参数。为了促进此过程,可以使用诸如热摄像机之类的传感器从过程中提取数据并调整参数以保持过程稳定,尽管外部干扰。在这项研究中,研究了从同轴热摄像机中提取的不同信号并进行了比较以优化过程。为了研究这种可能性,以恒定激光功率沉积了五个重叠的轨道,以提取平均像素值以及熔体池面积,长度,宽度和方向。每个轨道沉积的行为是根据激光功率建模的,这些模型用于计算和测试基于不同信号的激光功率降低策略。结果表明,熔体池面积是用于有效过程控制的最相关的信号,导致稳定过程,仅轨道到轨道的信号变化的±1.6%。
摘要:定向能量沉积 (DED) 已广泛应用于部件修复。在修复过程中,表面缺陷被加工成凹槽或槽口,然后重新填充。凹槽几何形状的侧壁倾斜角已被公认对修复部件的机械性能有相当大的影响。这项工作的目的是通过实验和建模研究修复各种 V 形缺陷的可行性。首先,通过扫描缺陷区域定义修复体积。然后,对修复体积进行切片以生成修复刀具路径。之后,使用 DED 工艺在具有两种不同槽口几何形状的受损板上沉积 Ti6Al4V 粉末。通过微观结构分析和拉伸试验评估修复部件的机械性能。对修复部件的测试表明,在三角形槽口修复中,沉积物和基材之间具有良好的结合。开发了基于顺序耦合热机械场分析的 3D 有限元分析 (FEA) 模型来模拟相应的修复过程。测量了修复样品上基体的热历史,以校准 3D 耦合热机械模型。温度测量结果与预测的温度结果非常吻合。之后,使用经过验证的模型预测零件中的残余应力和变形。预测的变形和应力结果可以指导修复质量的评估。
这项工作着重于316升底物上的复合涂层(316升染色的钢)的有向能沉积的热建模。开发的有限元模型预测了沉积过程中包裹中部中间部分的热历史和熔体池维度的演变。nu-merical结果与实验分析(光学和扫描电子显微镜和热电偶记录)相关,以验证模型并讨论可能的固化机制。证明,在边界条件下强制对流的实施非常重要,以确保输入能量和热量损失之间的平衡。最高峰值温度显示了第一层的略有增加趋势,其次是明显的稳定,随着外壳高度的增加。通过边界证明了高热量损失。在文献中,大多数建模研究都集中在单层或几层几何上,但这项工作描述了一个多层模型,能够预测沉积过程中的热领域历史记录并提供有关新物料的一致数据。该模型可以应用于重新校准的其他形状。详细介绍了校准方法以及对输入参数的灵敏度分析。©2021作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
实施电弧定向能量沉积需要开发新型、工艺适应性强的高性能铝合金。然而,传统的高强度合金难以加工,因为它们容易产生热裂纹。基于 Al-Mg-Zn 的交叉合金结合了良好的可加工性和人工时效后的良好机械性能。在这里,我们提出了一种使用 Ag 微合金化进一步改善 Al-Mg-Zn 交叉合金机械性能的努力。在样品中没有观察到裂纹和少量孔隙。微观结构以细小和球状晶粒为主,晶粒尺寸为 26.6 l m。晶粒结构基本上没有纹理,包含细小的微观偏析区,偏析缝厚度为 3-5 微米。经热处理后,这些微观偏析区溶解,并形成 T 相沉淀物,这通过衍射实验得到澄清。该沉淀反应导致显微硬度为 155 HV0.1,屈服强度分别为 391.3 MPa 和 418.6 MPa,极限拉伸强度分别为 452.7 MPa 和 529.4 MPa,横向和纵向断裂应变分别为 3.4% 和 4.4%。所得结果表明,可以使用新开发的铝交叉合金通过电弧直接能量沉积制造高负荷结构。
•高功率电池用于机载的定向能量•用于航空起步/备用功率的下一代•用于LIS航空的启动/备用功率的阴极•分离器到LIS电池循环寿命(NASA)•多平台li li li ion li ion li ion电池
图 3 – 传统、L-PBF 和 L-DED 处理的 Fe-Co 的屈服强度和延展性特性与特定工艺的名义冷却速率的关系图。
摘要:由于其良好的材料特性(例如耐腐蚀、耐磨、生物相容性),聚酰胺 12(PA12)等热塑性材料因可用作金属部件上的功能涂层而备受关注。为确保涂层的空间分辨力并缩短工艺链,通过激光束(DED-LB/P)进行聚合物粉末的定向能量沉积是一种很有前途的方法。由于特征吸收带,在 DED-LB/P 装置中使用波长为 1.94 µ m 的铥光纤激光器进行研究,以在无需添加任何吸收添加剂的情况下在不锈钢基材上生成 PA12 涂层。通过红外热成像分析了能量密度和粉末质量流量的影响。此外,还通过差示扫描量热法、激光扫描显微镜、光学显微镜和交叉切割测试对涂层进行了表征。本研究结果首次证明了使用铥光纤激光器实现无吸收体 DED-LB/P 工艺的基本可行性。可实现孔隙率低、附着力好的 PA12 涂层。根据特定应用的要求,必须在 PA12 涂层的密度和表面质量之间进行权衡。使用红外热成像技术适用于现场检测因能量输入过多而导致的工艺不稳定性。
本研究的目的是评估一种利用机械生成的原料进行定向能量沉积的新型再制造方法的能耗。气雾化是定向能量沉积原料的最先进的生产工艺,本研究将其纳入再制造工艺路径以提供比较方法。开发了利用这两种拟议工艺路径的再制造特定能耗模型,并将其应用于案例研究,以调查未来制造范式的节能机会。能源建模分三个阶段进行。首先,从实验观察中生成机械生成的原料生产能耗模型。其次,从实验观察、制造商报告的估计值和文献中的数据的组合中生成气雾化原料生产能耗模型。最后,定向能量沉积的能耗模型来自实验观察,与文献中报告的估计值相比具有优势。利用这些模型,比较了两种工艺路径中的特定能耗,并通过估算再制造支架的能耗来展示它们的应用。两种原料生产方法的比能耗相似。定向能量沉积工艺的比能耗是各自再制造路径中最大的组成部分,比前者高出一个数量级;提高沉积速率是降低总体比能耗的最重要因素。据估计,在修复原始部件质量的约 15% 时,所分析的再制造技术比更换技术消耗的能量更少。
我们的定向能量(DE)技术是紧凑,模块化,可扩展,高效且易于扩展的各种月球应用。使用以单模式或多模式与可调激光光电传感器(LPV)相结合的纤维耦合激光器可以实现约20%的总体端到端端效率,超过1公里。此外,将开发热电池以存储未转化为电能的能量的废热,从而使接收器的电气和热能合并的转换效率接近100%。