*不包括所有金属 AM 工艺 基于参考文献: • Gradl, P.、Tinker, D.、Park, A.、Mireles, P.、Garcia, M.、Wilkerson, R.、Mckinney, C. (2022)。“航空航天部件的稳健金属增材制造工艺选择和开发”。材料工程与性能杂志 (JMEP)。评论文章。 • ASTM 增材制造技术委员会 F42。增材制造技术标准术语 ASTM 标准:F2792-12a。(2012)。 • Gradl, PR、Greene, SE、Protz, C.、Bullard, B.、Buzzell, J.、Garcia, C.、Wood, J.、Osborne, R.、Hulka, J. 和 Cooper, KG,2018。液体火箭发动机燃烧装置的增材制造:工艺开发和热火测试结果摘要。参加 2018 年联合推进会议(第 4625 页)。
首先,我要感谢我的导师兼西门子导师 Tobias Kamps 的指导、支持和信任。Tobias 是第一个鼓励我并给予我信心开始攻读博士学位的人。在西门子攻读博士学位期间,我学到了很多东西,无论是专业上还是个人方面,因为 Tobias 委托我负责各种内部和外部项目的技术项目管理。我还要感谢我的导师、LTU 的 Jörg Volpp 和 Alexander Kaplan 的指导、随时准备的态度以及推动我做得越来越好。Jörg 总是准备好对科学出版物给出非常快速和详细的反馈,并通过非常深入的科学讨论让我走上正轨。此外,如果没有他和他在科学界的丰富经验,整个组织和我攻读博士学位期间的快速进步是不可能的。Alexander 通过各种研讨会和讨论帮助了我很多,特别是在我攻读博士学位期间的个人发展方面。我真的很感激我们在书评或研讨会上对个性的深入交谈。他总是让我对事物有不同的看法。如果没有他们,这项工作和经历就不会是现在的样子。我还要感谢巴伐利亚合作研究计划 (BayVFP) 为“VALIDAD”项目提供的资金、欧洲创新与技术研究所 (EIT RawMaterials) 为“SAMOA”项目提供的资金以及瑞典研究委员会为“SMART”项目提供的资金。
摘要:定向能量沉积 (DED) 已广泛应用于部件修复。在修复过程中,表面缺陷被加工成凹槽或槽口,然后重新填充。凹槽几何形状的侧壁倾斜角已被公认对修复部件的机械性能有相当大的影响。这项工作的目的是通过实验和建模研究修复各种 V 形缺陷的可行性。首先,通过扫描缺陷区域定义修复体积。然后,对修复体积进行切片以生成修复刀具路径。之后,使用 DED 工艺在具有两种不同槽口几何形状的受损板上沉积 Ti6Al4V 粉末。通过微观结构分析和拉伸试验评估修复部件的机械性能。对修复部件的测试表明,在三角形槽口修复中,沉积物和基材之间具有良好的结合。开发了基于顺序耦合热机械场分析的 3D 有限元分析 (FEA) 模型来模拟相应的修复过程。测量了修复样品上基体的热历史,以校准 3D 耦合热机械模型。温度测量结果与预测的温度结果非常吻合。之后,使用经过验证的模型预测零件中的残余应力和变形。预测的变形和应力结果可以指导修复质量的评估。
摘要:激光粉末定向能量沉积工艺是一种金属增材制造技术,可制造具有高度几何和材料灵活性的金属零件。原位送粉的独特特性使得在制造过程中使用元素粉末混合物定制元素组成成为可能。因此,它可以潜在地应用于低成本合成工业合金、用不同的粉末混合物改性合金以及使用元素粉末混合物作为原料设计具有位置相关特性的新型合金。本文概述了使用激光粉末定向能量沉积方法通过供给元素粉末混合物来制造各种类型的合金。首先,详细描述了激光粉末定向能量沉积在制造金属合金方面的优势。然后,回顾了通过多种类别的元素粉末混合通过激光粉末定向能量沉积制造合金的最新研究和发展情况。最后,讨论了未来发展中的关键技术挑战,主要是成分控制。
许多增材制造 (AM) 技术都依赖于粉末原料,这些原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流动和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,快速蒸发的影响通过额外的机械和热界面通量来整合。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
节省时间和更快的综合企业可用性,这尤其是当今对快速市场推出的需求。与带有粉末床的添加过程不同,例如激光粉末床融合,可用于生产高度构图的几何形状,基于粉末喷嘴的基于粉末喷嘴的进程,例如激光定向能量沉积(DED-L),也称为激光金属沉积(LMD),可构成组合模型和构建率和构建率和高构建率和乘积和乘积和乘积和乘积。Ti - 6AL - 4V等钛合金在工业应用中广泛使用。由于其出色的机械函数,低密度以及出色的耐腐蚀性和生物相容性,因此它们在医疗和牙科应用中或飞机扇区中的金属组件中使用,例如在高温下在涡轮机工作中的压缩机叶片中应用。[2 - 4]取决于制造过程的条件以及最终的后热机械治疗的特征,Ti - 6AL - 4V可以具有不同的微结构特征,这显着影响其性质。[2]两个阶段α和β的先验β晶粒的形态和排列是这些特征的例子。deD-l分量的微结构主要是通过具有柱状形状的先验β晶粒来表征的。[4,5]常规钛合金中的两个极端排列的极端情况是层状微结构和e词微结构。两种类型的微观结构都可以具有两个阶段的细节和粗整体。[2,6]相位的大小(纤维或粗糙)及其排列(层层或等词)会影响机械性能。这些依赖性已被广泛研究,例如,关于强度,螺旋,蠕变和疲劳行为的已知。
1 缩写:AM:增材制造;MPD:熔池深度;DED:定向能量沉积;ANN:人工神经网络;VED:体积能量密度;PID:比例-积分-微分。
1 加拉茨大学工程学院机械工程系,Domneasc ă 47, 800008 Galati,罗马尼亚 2 先进车辆系统中心(CAVS),密西西比州立大学,斯塔克维尔,MS 39762,美国;bagheri.274@gmail.com 3 微机电系统中心(CMEMS-UMinho),Campus de Azur é m,米尼奥大学,4800-058 Guimarães,葡萄牙;brunohenriques@dem.uminho.pt 4 陶瓷和复合材料实验室(CERMAT),Campus Trindade,圣卡塔琳娜联邦大学(UFSC),Florian ó polis 88040-900,SC,巴西 5 德累斯顿工业大学制造技术研究所,01062 Dresden,德国; andres_fabian.lasagni@tu-dresden.de 6 弗劳恩霍夫制造研究所和 Strahltechnik IWS,Winterbergstr。 28, 01277 Dresden, 德国 7 奥本大学机械工程系, Auburn, AL 36849, USA; shamsaei@auburn.edu 8 国家增材制造卓越中心 (NCAME),奥本大学,奥本,AL 36849,美国 *通讯作者:mihaela.buciumeanu@ugal.ro (MB); fsamuel@dem.uminho.pt (FSS)
摘要:近年来,Inconel 625 的工业应用显著增长。这种材料是一种镍基合金,以其耐化学性和机械性能而闻名,尤其是在高温环境下。通过金属增材制造 (MAM) 生产的零件的疲劳性能在很大程度上取决于其制造参数。因此,表征由给定参数组生产的合金的性能非常重要。本研究提出了一种表征 MAM 零件机械性能的方法,包括通过激光定向能量沉积 (DED) 进行材料生产参数化。该方法包括在 DED 生产微型样品后对其进行测试,并由通过实验数据开发和验证的数值模型支持应力计算。本文讨论了通过 DED 生产的 Inconel 625 的广泛机械特性,重点是高周疲劳。使用微型样品获得的结果与标准尺寸样品非常一致,因此即使在某些塑性效应的情况下也验证了所应用的方法。至于高周疲劳性能,通过 DED 生产的样品表现出良好的疲劳性能,可与其他竞争金属增材制造 (MAMed) 和传统制造的材料相媲美。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。