图5:在MSM的三个队列中发现的功能术语。上图:用picrust2获得了aNCOM-BC2组之间的kegg,并根据其对数折叠变化(LFC)选择。A.比较Prepep和HIV+ Lowcd4 Preart之间的KO项。B.比较HIV+ Lowcd4 Postart和HIV+ Highcd4 Postart之间的KO项。C.在Prepep与Postpep之间的KO术语比较。较低的图像:使用picrust2获得的EC项,与ANCOM-BC2组相比,并根据其LFC选择。D.在Prepep和HIV+ Lowcd4 Preart之间进行EC项的比较。E. HIV+ LOWCD4 POSTART和HIV+ HIGHCD4 POSTART之间的EC项比较。F.在Prepep与Postpep之间的EC项比较。注意:红色的属在参考组中具有阳性LFC(较高的丰度)。蓝色的属在参考组中具有负LFC(较低的丰度)。
摘要 本研究旨在从网络营销和销售的角度研究食品行业分销策略的有效因素。本研究在目的上具有应用发展性,在数据收集方法上具有定性,在研究实施方法上具有元合成方法。本研究的统计人群包括 12 名在营销管理和分销渠道领域具有专业知识并拥有该领域书籍或文章的大学教授,以及在该领域有专门研究的理论家和研究人员。本研究采用综合合成的科学方法,通过回顾已发表的文章进行分析;并根据 23 篇选定的文章提取了 85 个指标。最终对16个组成部分进行了评估和确定,并最终通过应用专家对人的因素、为客户创造价值、关注管理者的能力、内部因素、外部因素、管理因素、意见挖掘、数字营销、环境因素、内容营销、商业策略、对内外部环境的完整了解、直接营销、视觉特征、优化、竞争绩效等组成部分的总体意见,确认和确定了最终的框架。
摘要目的:本研究探讨了尼日利亚公共服务中人工智能实施的现状,以及利用人工智能改善治理和服务交付的潜在好处、挑战和战略步骤。方法:研究设计是定性的。数据是通过二次数据收集收集的,其中查阅了与人工智能相关的学术文章、书籍和报告的全面文献综述。本研究采用主题研究方法来阐明与治理和公共服务中的人工智能相关的潜在问题、信念和经验。该研究还以内容分析为基础。结果:研究结果表明,人工智能在尼日利亚公共服务中的应用仍处于早期阶段,在电子政务、医疗保健、银行业、房地产业务和执法/安全机构等领域取得了有希望的发展。尼日利亚政府需要在基础设施建设和人力资本发展方面投入大量资金,这反过来将弥补尼日利亚技术进步中对人工智能的无知而导致的技能差距、基础设施不足和失误。局限性:本研究通过确定影响人工智能采用和实施的主要障碍,考察了人工智能在尼日利亚公共服务和治理中的现状。该研究提出了将人工智能应用到尼日利亚公共服务和治理中的进步建议。贡献:本研究全面了解了如何在尼日利亚独特的环境中采用人工智能。结果:本研究未获得任何机构或组织的资助。关键词:人工智能 (AI)、公共服务、治理、效率、生产力引用方式:Nwosu, CC, Obalum, DC, & Ananti, MO (2024)。尼日利亚公共服务和治理中的人工智能。治理与问责研究杂志,4(2),109-120。1. 简介人工智能 (AI) 正日益成为全球各个领域的变革力量,其在公共服务和治理中的应用在尼日利亚引起了广泛关注,尼日利亚是一个人口快速增长、社会经济挑战复杂的国家。将人工智能融入公共服务和治理,有可能解决诸如效率低下、腐败和服务交付差距等关键问题。人工智能技术可以增强决策过程,改善公共资源管理,并为政府机构面临的挑战提供创新解决方案。自动化日常行政任务,以增强复杂的数据分析和预测建模。人工智能提供
图 2 气候数据的主成分分析,包括主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B)。颜色表示主成分上气候变量坐标的平方和。红色表示相关性高,蓝色表示相关性低。横轴对应图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应月份(1 表示一月,12 表示十二月)
图 2 气候数据的主成分分析,包括主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B)。颜色表示主成分上气候变量坐标的平方和。红色表示相关性高,蓝色表示相关性低。横轴对应图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应月份(1 表示一月,12 表示十二月)
图 2 气候数据的主成分分析,包括主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B)。颜色表示主成分上气候变量坐标的平方和。红色表示相关性高,蓝色表示相关性低。横轴对应图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应月份(1 表示一月,12 表示十二月)
图 2 气候数据的主成分分析,在主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B) 下。颜色表示主成分上气候变量坐标的平方和。红色表示高相关性,而蓝色表示低相关性。横轴对应于图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应于图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应于月份(1 表示一月至 12 表示十二月)
护士的倦怠和职业流失意图的资源,用于护理过程中的年龄调解模型。国际环境研究与公共卫生杂志,2011年16日。Hudgins,T。A.(2016)。的韧性,工作满意度和预期的转盘 -
图 2 气候数据的主成分分析,在主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B) 下。颜色表示主成分上气候变量坐标的平方和。红色表示高相关性,而蓝色表示低相关性。横轴对应于图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应于图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应于月份(1 表示一月至 12 表示十二月)
图 2 气候数据的主成分分析,在主成分 1 (PC1) 和 2 (PC2) (2A) 以及主成分 2 (PC2) 和 3 (PC3) (2B) 下。颜色表示主成分上气候变量坐标的平方和。红色表示高相关性,而蓝色表示低相关性。横轴对应于图 2a 中的 PC1 和图 2b 中的 PC2,纵轴对应于图 2a 中的 PC2 和图 2b 中的 PC3。T max:最高温度,T min:最低温度,ETP:潜在蒸散量,Prec:降水量,Humr:相对湿度。数字后缀对应于月份(1 表示一月至 12 表示十二月)