吸入治疗药物对于治疗哮喘和慢性阻塞性肺疾病(COPD)很重要。吸入器是哮喘或COPD治疗中最常见的药物装置。吸入药物及其相应吸入器的吸入气溶胶处理的主要优点是,以较小的剂量直接治疗肺部,而侧面效果较少,而不是口服递送(1)。然而,吸入药物的效果受患者正确使用吸入器的能力的限制,当开处方这些药物时,问题通常会忽略(2)。患者对吸入器的使用不正确可能导致不受控制的哮喘或COPD并增加成本(3)。有证据表明,哮喘的严重程度(4)的成本显着增加,而哮喘不受控制的患者在医疗保健上的支出是受控哮喘患者的两倍以上(5)。许多国际组织和学术团体,包括国际初级保健呼吸系统(IPCRG),气溶胶药物管理改善团队(ADVIT)和美国呼吸护理协会(AARC),呼吁更高的认识,认为正确使用设备是成功治疗的关键,并且已经制定了实施它们的相应指南(2,6-11)。不正确的吸入器使用可能直接是由较差的指导导致的,并且可以通过培训来显着改善(2、12-14)。许多指南强调,只有在接受适当使用患者使用并证明这种能力的患者培训后,才应开处方(15,16)。然而,许多研究表明,在不同的设备中,哮喘或COPD患者吸入器的总体和关键错误率很高,分别为50%至100%至100%和14-92%,这表明正确使用设备的问题远离解决的问题(17)。证据表明,仍然需要针对各种可用设备的正确吸入技术培训患者(18)。证据表明,仅使用制造商的说明表是不足以使患者获得正确的吸入技术(19 - 21)。的口头教学表现出比阅读制造商的Lea -eT(20、22、23)的效率更大,尤其是在第一次使用吸入器的患者中(21)。证明了基于口头教学的三种教学方法(例如,小组教学,视频指导和个人教学)被证明具有良好的效率,并且个人教学(言语教育加示范)比小组和视频指导更为实用(24)。此外,录取系列的吸入设备的评论得出的结论是,熟练的教育者面对面或视频(2),最好通过口头指示和对技术的物理证明来提供吸入技术教育和物理证明。
摘要 - 中风会导致患者下肢和偏瘫的运动能力受损。准确评估下肢运动能力对于诊断和康复很重要。可以数字化此类评估,以便可以避免任何时间和主观性来追溯每个测试,我们测试如何将配备压力敏感鞋垫和惯性测量单元配备的双模式智能鞋用于此目的。设计了5m步行测试协议,包括左和右转弯。数据是从23名患者和17名健康受试者中收集的。对于下肢的运动能力,两名医生观察到了测试,并使用五个分级的医学研究委员会进行肌肉检查评估。同一患者的两个医生得分的平均值被用作地面真相。使用我们开发的功能集,在对患者和健康受试者进行分类时可以达到100%的精度。使用我们的功能集和回归方法实现了患者的肌肉强度,平均绝对误差为0.143,最大误差为0.395,比每个医生的得分更接近地面真实(平均绝对误差:0.217:最大误差:最大误差:0.5)。因此,我们验证了使用此类智能鞋的可能性,可以客观,准确地评估中风患者的下肢肌肉强度。索引术语 - 中途,机器学习,智能鞋,下肢的肌肉力量
选择用于优化的面板,该面板集中在T细胞表面抗原(CD3,CD4,CD8)上,并鉴定了具有内存(CD45RA,CD197)和激活(CD27,CD27,CD27,CD27,CD27,CD25,CD127)的亚群(CD25,CD127)的鉴定。还包括在其他谱系细胞类型(CD19,CD16,CD56,CD185)上表达的几种抗原。关于门控策略(图2),我们首先消除双重和死细胞,并根据大小和散射在淋巴细胞细胞上门控。淋巴细胞进一步分为T和B细胞。对NK细胞标记的CD3- / CD19-种群进行了询问。CD3+ T细胞被缩小到T辅助器(CD4)和细胞毒性(CD8)亚群中。CD4和CD8单阳性细胞的记忆和激活标记。CD4单阳性细胞还评估了调节性T细胞(CD25+,CD127-)。在第5和6面板中,CD28在T细胞上门控。在第6面板中,CD185在T和B细胞上门控。
由省政府制定和实施的特别公共资助政策在中国私立大学的发展中起着重要作用。但是,关于中国私立大学和大学的省级特殊公共资助政策的理性和完整性缺乏科学评估。因此,本文使用PMC索引模型和文本挖掘技术来为中国私立大学的省级公共资助政策建立评估指数系统。基于PMC索引和PMC-Surface,自2010年以来发布的13条政策文本进行了科学评估。结果表明,13个策略的平均PMC索引为6.97,PMC-Sur-face Map平滑,这表明这些策略的总体结构是合理的,并且策略内容具有一定的完整性。只有一项政策是不可接受的。通过进一步的分析,我们发现样本策略的内容设计仍然有很大的改进空间,其合理性和完整性与出版时间有关。这项研究有助于充分了解中国私立大学省级公共资助政策的优势和缺点。
摘要:苹果镶嵌病毒(APMV)的感染会严重损害苹果叶的细胞结构,从而导致叶叶绿素含量(LCC)降低和果实产量降低。在这项研究中,我们提出了一种新的方法,该方法利用高光谱成像(HSI)技术来无损地监测APMV感染的苹果叶子,并预测LCC作为疾病严重程度的定量指标。LCC数据是从360个APMV感染的叶片中收集的,并使用竞争性自适应重新加权采样算法选择最佳波长。基于增强和堆叠策略构建了高精度LCC倒置模型,其验证集R 2 V为0.9644,表现优于传统的集合学习模型。该模型用于反转LCC分布图像,并计算每个叶子的LCC变异(CV)的平均和系数。我们的发现表明LCC的平均和简历与疾病的严重程度高度相关,并且与敏感波长的结合使疾病严重程度的准确鉴定(验证集合集合= 98.89%)。我们的方法考虑了植物化学成分的作用,并在叶片尺度上对疾病严重程度进行了全面评估。总体而言,我们的研究提出了一种有效的方法来监测和评估苹果叶的健康状况,提供了可以帮助疾病严重程度的量化指数,可以帮助预防和控制疾病。
Nanyang Technological University,Nanyang Ave 50,S2-B4A-03,639798,新加坡B音乐技术中心,乔治亚州技术研究所,J。AllenCouch Building,J。AllenCouch Building,840 McMillan ST NW,Atlanta,GA,GA,USANANY CENTRY,NANY NANY NANINANE,NANY NANANY,NANANY,NANY NANANY,NANY NANANY,NANY NANANY,NANY NANANY,NANANY,48 AVE,639818,新加坡D语言学和东南亚语言学研究部,乔拉隆大学艺术学院,254 Phayathai Rd,Wang Mai,Pathum wanm Wan District,曼谷,10330 Luang District,Pathum Thani,12121,泰国F心理学系,Kasetsart大学社会科学系,KASETSART大学,Ngamwongwan Rd 50,Lat Yao,Chatuchak区,曼谷Chatuchak区,10900年,泰国G语言研究中心,泰国G语言学研究中心,艺术与社会科学系,singapore of Singapore of Singapore of Singapore national of SingapeNanyang Technological University,Nanyang Ave 50,S2-B4A-03,639798,新加坡B音乐技术中心,乔治亚州技术研究所,J。AllenCouch Building,J。AllenCouch Building,840 McMillan ST NW,Atlanta,GA,GA,USANANY CENTRY,NANY NANY NANINANE,NANY NANANY,NANANY,NANY NANANY,NANY NANANY,NANY NANANY,NANY NANANY,NANANY,48 AVE,639818,新加坡D语言学和东南亚语言学研究部,乔拉隆大学艺术学院,254 Phayathai Rd,Wang Mai,Pathum wanm Wan District,曼谷,10330 Luang District,Pathum Thani,12121,泰国F心理学系,Kasetsart大学社会科学系,KASETSART大学,Ngamwongwan Rd 50,Lat Yao,Chatuchak区,曼谷Chatuchak区,10900年,泰国G语言研究中心,泰国G语言学研究中心,艺术与社会科学系,singapore of Singapore of Singapore of Singapore national of Singape
间接互惠领域调查了当个人不断监视和相互评估的社交互动时,社会规范如何促进合作。通过遵守某些社会规范,合作可以提高其声誉,进而获得他人的好处。八个社会规范,称为“八个领导”,只要信息是公开且可靠的,就可以有效地促进合作的演变。这些规范将小组成员归类为“好”或“坏”。在这项研究中,我们研究了一个场景,在这种情况下,个人相互分配细微的声誉分数,并且只与那些超过一定阈值的人合作。我们通过分析和模拟来发现此类定量评估是错误纠正的,从而在信息是私人且不可靠的情况下促进了合作。此外,我们的结果确定了四个针对此类条件的特定规范,并且可能与维持自然人群的合作有关。
Aditya Akundi是德克萨斯州里奥格兰德山谷(UTRGV)大学信息学和工程系统系的助理教授。Akundi博士于2016年在El Paso(UTEP)的德克萨斯大学获得Hisphdat。 在他的博士学位论文中,他研究了信息理论的使用来理解和评估复杂的社会技术系统。 在加入UTRGV之前,他曾在UTEP担任工业制造业和系统工程系的研究助理教授,为期三年,从2016年到2019年。。 Akundi博士在系统建模,系统测试,评估Incose手册,基于模型的系统工程和工程教育领域发表了几篇论文。 他的研究已获得国家科学基金会(NSF)的资金,目前是Utrgv.的I-Dream4D国防部(D0D)研究员,他是Incose和Asee的成员。 他于2017年和2018年获得了ASEE制造部门的未杰出初级教师奖,目前是ASEE制造部的计划主席。Akundi博士于2016年在El Paso(UTEP)的德克萨斯大学获得Hisphdat。在他的博士学位论文中,他研究了信息理论的使用来理解和评估复杂的社会技术系统。在加入UTRGV之前,他曾在UTEP担任工业制造业和系统工程系的研究助理教授,为期三年,从2016年到2019年。Akundi博士在系统建模,系统测试,评估Incose手册,基于模型的系统工程和工程教育领域发表了几篇论文。他的研究已获得国家科学基金会(NSF)的资金,目前是Utrgv.的I-Dream4D国防部(D0D)研究员,他是Incose和Asee的成员。他于2017年和2018年获得了ASEE制造部门的未杰出初级教师奖,目前是ASEE制造部的计划主席。
Aizen,M。A.和Feinsinger,P。(2003)。蜜蜂不做?昆虫传粉媒介动物群和花授粉对栖息地破碎的反应。景观的变化方式:美洲的人类干扰和生态系统碎片(pp。111–129)。Springer。 https://doi。org/10. 1007/978- 3- 662-05238-9_ 7 Aizen,M.A.,Garibaldi,L.A.,Cunningham,S.A。,&Klein,A.M。(2009)。 农业多少取决于传粉媒介? 从农作物生产的长期趋势中的课程。 植物学纪事,103(9),1579–1588。 https:// doi。org/10. 1093/aob/mcp076 Bartomeus,I.,Potts,S。G.,Steffan-Dewenter,I.,Vaissiere,B.E.,Woyciechowski,M. C.和Bommarco,R。(2014)。 昆虫传粉媒介对作物产量和质量的贡献随农业强化而异。 peerj,2,e328。 https://doi。Org/10。7717/peerj。328Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2014)。 使用LME4拟合线性混合效应模型。 ARXIV预印ARXIV:1406.5823。 Bennett,J.M。,Steets,J。 A.,Burns,J.H.,Durka,W.,Vamosi,J.C.,Arceo-Springer。https://doi。org/10. 1007/978- 3- 662-05238-9_ 7 Aizen,M.A.,Garibaldi,L.A.,Cunningham,S.A。,&Klein,A.M。(2009)。农业多少取决于传粉媒介?从农作物生产的长期趋势中的课程。植物学纪事,103(9),1579–1588。https:// doi。org/10. 1093/aob/mcp076 Bartomeus,I.,Potts,S。G.,Steffan-Dewenter,I.,Vaissiere,B.E.,Woyciechowski,M. C.和Bommarco,R。(2014)。昆虫传粉媒介对作物产量和质量的贡献随农业强化而异。peerj,2,e328。https://doi。Org/10。7717/peerj。328Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2014)。使用LME4拟合线性混合效应模型。ARXIV预印ARXIV:1406.5823。Bennett,J.M。,Steets,J。 A.,Burns,J.H.,Durka,W.,Vamosi,J.C.,Arceo-Bennett,J.M。,Steets,J。A.,Burns,J.H.,Durka,W.,Vamosi,J.C.,Arceo-
图1:(a)TPC的几何形状以及相互空间和相关的高对称点的表示。(b)每个原始细胞内两个孔的TPC的分散图(黑色)或不同的(红色)半径1和R 2。(c)浆果曲率和山谷Chern数模拟了为疾病的TPC(r 1 = 180 nm和r 2 = 80 nm)。(d)边缘模式的色散曲线(实心蓝线)沿着胡须界面在两个半偶然的镜像对称TPC之间,平行于γk方向(浅蓝色背景表示投射的散装模式)。实心红线显示无限TPC的分散曲线。插图比较界面的FBZ(厚蓝线与长度为2π/b 0)和无限TPC的FBZ。(e)模拟(左图)中使用的典型单元电池和边缘模式的磁场振幅的分布(右图)。