摘要功率分销网络的检查和维护对于有效地向消费者提供电力至关重要。由于电源分配网络线的高电压,手动现场直线操作很难,有风险和不足。本文研究了一个具有自主工具组装功能的功率分配网络实时运营机器人(PDLOR),以替代各种高风险电气维护任务中的人。为了应对PDLOR的动态和非结构化工作环境中工具组装的挑战,我们提出了一个框架,该框架包括深层视觉引导的粗糙本地化以及先验知识以及模糊逻辑驱动的深层确定性策略梯度(PKFD-DPG)高级装配算法。首先,我们提出了基于Yolov5的多尺度识别和本地化网络,该网络使PEG-HOLE可以快速接近并减少无效的探索。第二,我们设计了一个主要的合并奖励系统,其中主线奖励使用事后的经验重播机制,而辅助奖励基于模糊的逻辑推理机制,解决了学习过程中无效的探索和稀疏奖励。此外,我们通过模拟和物理实验来验证提出算法的有效性和优势,并将其性能与其他组装算法进行比较。实验结果表明,对于单芯组装任务,PKFD-DPG的成功率比具有功能的奖励功能的DDPG高15.2%,比PD力控制方法高51.7%。对于多工具组装任务,PKFD-DPG方法的成功率比其他方法高17%和53.4%。
我们从根本上看到了以下能力:第一,捕获大量历史数据,并将其用于机器学习和 AI。第二,拥有一个基于云的平台,可以获取内部和外部数据,从天气和能源市场到内部交易,这样我们不仅可以拥有完整的数据历史,还可以快速应用实时数据,以便模型可以运行。第三部分是在我们的处理中拥有可扩展性,以便我们可以实时运行模型,推动实时决策,而不仅仅是进行历史或趋势分析。” Brad Walker,Alinta Energy 数据和分析总经理
• AST 与 ANG 合作,正在开发实时飞机危险区域 (AHA) 生成器,以便在正常和非正常运行期间快速识别受影响的空域 • 2014 年,ANG 开发了危险风险评估管理 (HRAM) 原型,以证明 AHA 计算和显示所需的时间可以从几分钟缩短到几秒钟 • AST 和 ANG 已将 HRAM 原型与大西洋城技术中心商业空间实验室中的 SDI 原型集成在一起,在 SpaceX 和 Blue Origin 实时运行期间展示其在影子模式下的能力
根据欧盟可再生能源指令 (2009/28/EC),爱尔兰的主要目标是到 2020 年,可再生能源占该国总能源消耗的 16%。为了实现这一目标,EirGrid 启动了一项多年期计划,即“提供安全、可持续的电力系统”,即 DS3 计划。DS3 计划的目的是应对以安全方式运营电力系统的挑战,同时实现 2020 年的可再生电力目标。该计划旨在确保电力系统能够在未来几年内随着可变非同步可再生能源发电量的增加而安全运行。在同步系统上实现这种程度的可再生能源整合是前所未有的,对电力系统的实时运行提出了重大挑战。
粗网格预测提供了巢界面上的边界条件,以便在细网格预测中使用。双向嵌套网格的优势包括在细网格上解析的细尺度工艺可以影响粗网格上的较大尺度流。这对于数值天气预测很重要,因为大气中的小规模过程极大地影响了大气中的大规模过程。由于与精细分辨率网格相比,粗分辨率网格上的预测所花费的时间和内存更少,因此模型的最外界可以远离预测区域,而细分辨率域仍然足够小,足以实时运行。移动巢也很常见,在当前模型中,较高的分辨率巢可以通过感兴趣的现象(例如飓风)移动。
摘要 - 该论文着重于混合能源系统(HES)的尺寸和操作操作,该杂志集成了多个发电单元(例如核,可再生能源)和多个电力消耗单元(例如网格,电气充电站,化学工厂),以有效地管理可再生产生和网格需求的可变性管理。尤其是,操作优化考虑了储能元件(ESE)的最佳充电和解释,以便将工业规模化学厂的变异性最小化。采用了退化的地平线优化方法来解决此操作优化问题,然后将其重新构成线性约束的二次编程问题,适用于实时运行。设计优化问题发现了ESE的最佳尺寸,以平衡化学厂的可变性和ESE安装的经济成本。全局优化技术(例如,直接)由于其非跨性别性而用于数值解决所提出的规模优化问题。
JAS39 Gripen 的飞行控制系统 (FCS) 具有一项称为机动载荷限制器 (MLL) 的功能。其目的是在任何情况下都让飞行员发挥最大性能,而不会陷入失控或结构超载。即使 MLL 功能可以防止偏离正常包线,但如果忽略低速警告,也有可能进入极低速状态。为了评估 MLL 功能和旋转特性,萨博自 1995 年以来一直在进行飞行测试。为在这些测试中提高效率和降低成本而开发的一种新工具称为 ROMAC(实时在线模型和航空数据控制)。ROMAC 包括 Gripen 飞机的完整仿真模型,使用来自飞行测试飞机的遥测输入数据实时运行。只需一秒的延迟,现在就可以进行实时并行模拟,并比较结果
我们提出了一种方法,通过解决基于模型的最优控制问题,以经济高效的方式运行电解器以满足加氢站的需求。为了阐明潜在问题,我们首先对额定功率为 100 kW 的西门子 SILYZER 100 聚合物电解质膜电解器进行实验表征。我们进行实验以确定电解器的转换效率和热动力学以及电解器中使用的过载限制算法。得到的详细非线性模型用于设计实时最优控制器,然后在实际系统上实施。每分钟,控制器都会解决一个确定性的滚动时域问题,该问题旨在最大限度地降低满足给定氢气需求的成本,同时使用储罐来利用随时间变化的电价和光伏流入。我们在模拟中说明了我们的方法与文献中的其他方法相比显著降低了成本,然后通过在实际系统上实时运行演示来验证我们的方法。