简单摘要:最初对经验性放射化学化学疗法做出反应后,大多数胸腺癌和胸腺癌变为难治性,需要二线疗法。多靶性酪氨酸激酶抑制剂Sunitinib是少数几种选择之一,尤其是在胸腺癌患者中,并且导致部分缓解并延长总体生存率。但是,舒尼替尼的活性有限,并非所有患者都受益。更好地理解其作用方式和预测生物标志物的定义将有助于选择最适合的患者。使用一组定义的sunitinib敏感和耐药细胞系中的实时多重酪氨酸磷酸化测定法,该测定法中含有144种激酶底物,我们产生了sunitinib响应指数(SRI)。然后使用同一SRI分类器将来自胸腺瘤的蛋白质裂解液和夏替尼的胸腺癌与潜在的反应者与非反应者进行分类。生物信息学预测和对激活上游激酶的进一步实验分析鉴定为舒尼替尼抗性的有效介质,在转移性胸腺瘤中特别有效。tyro3既可以用作舒尼替尼耐药性的生物标志物,又可以作为潜在的治疗靶标,可以帮助定制治疗决策并克服晚期胸腺瘤和胸腺癌的治疗耐药性。
由于未来需要管理的废旧电池数量巨大,回收锂离子电池 (LIB) 正成为一项当务之急。目前,将废旧 LIB 转化为再生产品的三种主要回收途径是火法冶金、湿法冶金或直接回收,而共沉淀法介于后两种途径之间:其关键单元操作是电池材料的浸出和阴极活性材料 (CAM) 再合成前体的共沉淀。由于浸出溶液对杂质的高度敏感性以及高质量 CAM 前体与溶解金属盐成分之间的紧密联系,对废旧 LIB 进行实验分析是找到最佳操作条件的关键步骤。为此,我们提出了一项实验活动来研究该过程中涉及的共沉淀和复杂化合物的形成。此外,我们还利用了严格模型在许多工业领域提供的支持,这也使化学工程和实验室分析受益。因此,在本研究中,我们还在 UniSim Design ® 上提出了一个严格的模拟模型,该模型带有热力学包 OLI ®,可以考虑所需的大多数不同的液固平衡。使用实验数据对模型进行验证,并对金属浓度、pH 值和螯合剂进行敏感性分析,以找到调节共沉淀结果的关键参数。目的是优化操作条件的选择,以限制通常昂贵且耗时的实验室测试和复杂分析的次数。
持续多通道监测生物电信号对于了解整个身体至关重要,有助于在神经研究中建立准确的模型和预测。目前最先进的无线生物电记录技术依赖于辐射电磁 (EM) 场。在这种传输中,由于 EM 场辐射范围很广,因此只能接收到一小部分能量,从而导致系统有损、效率低下。使用身体作为通信介质(类似于“电线”)可以将能量限制在体内,从而比辐射 EM 通信的损耗低几个数量级。在这项工作中,我们引入了动物身体通信 (ABC),它将使用身体作为介质的概念应用于慢性动物生物电记录领域。这项工作首次开发了动物身体通信电路和通道损耗的理论和模型。利用该理论模型,使用现成的组件构建了一个亚英寸 3 的定制传感器节点,该节点能够通过大鼠的身体感应和传输生物电位信号,与传统无线传输相比,其功率明显较低。体内实验分析证明,与传统无线通信方式相比,ABC 成功地通过身体传输了采集的心电图 (EKG) 信号,相关精度 >99%,功耗降低了 50 倍。
爆发了非凡的破坏性事件,例如,Covid-19的大流行极大地影响了全球供应链(SCS)的有序操作,并可能导致SC崩溃。监管行动,例如大流行期间的政府干预措施,可以大大减轻破坏的传播(即,涟漪效应)并提高了SC的生存能力。但是,专注于破坏传播管理的现有作品并未考虑这种干预措施的可能性。受到这一事实的激励,在这项研究中,我们研究了具有有限干预预算的多Echelon SC中的新破坏传播管理问题。的目的是最大程度地减少SC中目标参与者的概率衡量的破坏风险。为此,开发了一种新颖的方法,结合了因果贝叶斯网络(CBN),DO-Calculus和数学编程。特别是,建立了两个混合成员非线性编程模型以确定适当的干预措施。为了增强提出的数学模型,提出了两个有效的不平等现象。然后,开发出一种问题特异性遗传算法(GA)来处理大规模的问题实例。进行了案例研究的数值实验,并进行了随机生成的实例,以评估所提出模型的效率,有效的不等式和GA。基于实验分析,有了管理洞察力。
摘要 本综述讨论了有机分子结晶多晶型之间的固-固相变分析。虽然活性药物成分 (API) 是综述的范围,但无论有机分子是否具有生物活性,都没有特别定义其在结晶状态下的相互作用。因此,其他小有机分子也已纳入本分析,在某些情况下也讨论了聚合物。本综述的重点是实验分析;但是,增加了计算和理论方法部分,因为这些方法变得越来越重要,并且显然有助于理解例如转变机制,因为结果可以很容易地可视化。讨论了晶体结构之间固-固相变的以下方面。讨论了涉及热力学平衡的多晶型之间的相变热力学以及与吉布斯自由能密切相关的变量温度和压力。讨论了有机结晶固体中的两种主要转变机制,即置换和协同转变。回顾了用于理解 API 不同多晶型之间的机制和热力学平衡的实验方法。本文讨论了多晶型物性的转换,并回顾了热存储和释放,因为这是固态相变的主要应用之一。限制相变对于药物产品的控制很有吸引力,本文对其进行了回顾,因为它可能有助于通过使用亚稳态相来提高 API 的生物利用度。最后,本文讨论了有机材料的二级相变,这种相变似乎很少见。可以得出的结论是,尽管人们对多晶型和相变的一般理论有了很好的理解,但它对特定分子的作用仍然难以预测。
目的蛋白质经常用融合标签来表达,以方便实验分析。在通常为二倍体的锥虫中,标签编码 DNA 片段通常与一个天然等位基因融合。然而,由于重组细胞在转染后占群体的 0.1% 以下,这些 DNA 片段还包含一个标记盒用于正向选择。因此,天然 mRNA 非翻译区 (UTR) 被替换,可能会扰乱基因表达;在锥虫中,UTR 通常会在广泛和组成性多顺反子转录的背景下影响基因表达。我们试图开发一种标记策略,以保留血流形式非洲锥虫的天然 UTR,在这里我们描述了一种基于 CRISPR/Cas9 的敲入方法来驱动精确和无标记的必需基因标记。使用简单的标签编码扩增子,我们标记了四种蛋白质:组蛋白乙酰转移酶,HAT2;组蛋白去乙酰化酶,HDAC3;切割和多聚腺苷酸化特异性因子 CPSF3;以及变体表面糖蛋白排除因子 VEX2。该方法保留了天然 UTR,并产生了表达功能性重组蛋白的克隆菌株,通常两个等位基因都被标记。我们展示了基于免疫荧光的定位和富集蛋白质复合物的实用性;在本例中是 GFP HAT2 或 GFP HDAC3 复合物。这种精确标记方法有助于组装表达必需重组基因的菌株,同时保留其天然 UTR。
摘要:光伏组件通常在标准测试条件下的实验室中进行额定值和测试。由于环境条件和运行参数的随机性,例如目标位置的地形、坡度、方向、海拔、反照率和现有技术,此类条件无法在室外维持。由于双面组件能够从正反两面发电,其背面对发电量的影响仍不确定。本研究旨在通过实验分析和预测纳瓦布沙阿室外条件下半切双面PERC单晶光伏(PV)组件的电气特性。为此,我们在一栋部门大楼上方安装了一套实验系统,用于数据记录和分析。使用测光表(HD-2302)测量研究地点的太阳总辐射(Grad),并使用数字风速计PROVA AVM-05测量环境温度(Ta)、风速(Ws)和相对湿度(Rh)。使用PROVA-1101记录组件正反两面的电气特性。这些数据是在2023年2月至6月的五个月内,从上午9:00到下午4:00,每小时一次持续收集的。此外,我们还使用了不同的现有模型,根据记录数据预测双面光伏组件的电气特性。在分析期间,我们观察到组件正面产生了约91%的输出功率,而背面则占9%。我们发现,Evan-Florschuetz模型方程更适合预测双面组件的效率,因为它基于测量数据的误差更小。关键词:环境温度、半切双面光伏组件、湿度、统计分析、太阳辐射、风速。
热能电气化要求开发创新型家用热电池,以有效平衡能源需求和可再生能源供应。热化学储热系统由于其高热能存储密度和最小的热损失,在支持供暖电气化方面显示出巨大的前景。在这些系统中,基于盐水合物的热化学系统特别有吸引力。然而,它们在蒸汽存在下确实存在缓慢的水合动力学问题,这限制了可实现的功率密度。此外,它们相对较高的脱水温度阻碍了它们在支持供暖系统中的应用。此外,在供暖应用中实施这些系统时,仍然存在关于适当的热力学、物理、动力学、化学和经济要求的挑战。本研究分析了一种基于醋酸钠与液态水直接水合的热化学储能方案。所提出的方案满足了供暖应用的众多要求。通过直接将液态水添加到盐中,实现了前所未有的 5.96 W/g 的功率密度,比之前报道的其他利用蒸汽的盐基系统高出近两个数量级。尽管由于潮解和颗粒聚集,反应性会下降,但事实证明,通过加入 10% 的二氧化硅可以有效缓解这种失活,从而实现较低但稳定的能量和功率密度值。此外,与之前研究的其他盐不同,乙酸钠可以在热泵等电加热系统的理想温度范围内完全脱水(40 ◦ C - 60 ◦ C)。通过实验分析确定了所提方案在脱水、水合和多循环行为方面的性能。
纤维增强塑料(或复合材料)由于具有高的特异性刚度和强度而广泛用于许多高级工程结构中。复合材料的主要缺点是它们对内部伤害特征的敏感性。特别是对于层压板,一个小的冲击事件通常会导致几乎看不见的冲击损害(BVID),这可能会影响复合材料的结构完整性。在过去的几十年中,已经开发了和提出了几种非破坏性测试(NDT)方法,以便以有效的方式检测和评估BVID。在这项研究中,对复合材料中的几种最先进的NDT方法进行了比较实验分析(有关几个示例,请参见图1)。在此贡献中研究了以下方法:•使用传输和反射(动态时门控)信号进行超声C扫描•使用平面外和平面外两极化振动同时使用局部缺陷振动LDR•低功率振动振动感电振动vt使用单声音振动以及宽带振动,以及宽带振动,以及宽带振动,以及宽带振动,以及宽带技术(care),以及宽带技术(car)。至ASTM D7136)通过低速度下降重量为6.3 J,导致BVID。对复合材料中对NDT技术的机会和(当前的)局限性进行了批判性研究。这涉及对缺陷可检测性,缺陷大小和缺陷深度估计的评估。
全基因组测序 (WGS) 在医疗保健和研究中的应用日益广泛,使我们能够识别非编码区域中的大量变异,从而激发了近年来人们对这些非编码变异及其生物学意义的兴趣。越来越多的证据表明,功能性非编码变异可能是外显子组测序队列中遗传性缺失的原因,其中很大一部分患者未得到分子诊断(74)。值得注意的是,全基因组关联研究 (GWAS) 发现的近 90% 的疾病相关变异位于非编码区域,它们富含转录调控元件 (TRE),可能通过扰乱基因调控发挥作用(81)。尽管非编码变异在人类疾病中发挥着至关重要的作用,但由于我们对非编码区域的了解有限,对非编码变异的解释和优先排序长期以来一直受到阻碍。大型联盟(如 ENCODE (32) 和 FANTOM5 (5))和独立研究小组在这一未知领域对潜在功能元件进行注释方面取得了巨大进展。在这篇综述中(图 1),我们首先讨论了调控格局的各种注释,以及这些努力如何帮助解读非编码变异的生物学影响。然后,我们描述了通过整合这些功能注释来确定非编码变异优先次序的生物信息学工具的进展。最后,我们提出了一系列实验分析来评估候选变异的调控潜力。