摘要:成熟的B细胞通过类开关重组(CSR)显着使免疫球蛋白(IG)生产多样化,从而允许遥远的“开关”区域的连接。CSR是由Activation诱导的脱氨酶(AID)启动的,该酶(AID)靶向在转录的靶向S区域的单链DNA中充分暴露的细胞糖苷,具有对WRCY基序的特定亲和力。在MAM-MALS中,富含G的序列还存在于S区域,形成有利于CSR的规范G-四链体(G4S)DNA结构。与G4-DNA(G4配体)相互作用的小分子被证明能够在B淋巴细胞中调节CSR,这要么积极地(例如核苷二磷酸激酶同工型)或负面的(例如RHPS4)。G4-DNA也与转录的控制有关,由于它们对CSR和转录调控的影响,富含G4的序列可能在B细胞恶性肿瘤的自然史上起作用。由于G4-DNA位于基因组中的多个位置,尤其是在癌基因启动子中,因此尚待澄清它如何更具体地促进生理学中的合法CSR,而不是致病性易位。G4结构在转录DNA和/或相应的转录本和重组中的特定调节作用似乎是理解免疫反应和淋巴结发生的主要问题。
标题:迈向多光谱红外成像 演讲者姓名:Elahe Zakizade 博士 公司名称/研究所:弗劳恩霍夫微电子电路与系统研究所 项目名称:Eurostars SPEKTIR 资助小组:Eurostars 摘要是否可以在网站上发表: ☒ 是 ☐ 否 提供最多 500 字的摘要。使用 ARIAL 字体,11 号。如果使用图表,文本和图表必须保持在这一页内。 近年来,热成像相机市场不断增长。主要驱动因素是基于微测辐射热计技术的非制冷红外焦平面阵列 (IRFPA),因为它们是低成本成像仪,不需要额外的复杂和昂贵的冷却系统。大多数当前的热成像应用都基于长波红外 (LWIR) 辐射的检测,波长覆盖从 8 μm 到 14 μm,对人体温度敏感,不仅可用于军事应用,而且在智能手机、监控摄像头或自动驾驶汽车等大众市场应用中也越来越受欢迎。此外,非制冷热像仪在波长范围为 3 μm 至 5 μm 的中波红外 (MWIR) 中也能敏感。MWIR 传感器可用于监测温度高达几百摄氏度的“热源”、检测危险或易燃气体或环境监测等应用。红外区域多光谱成像的实现引起了广泛关注,因为它能够可视化和组合来自 MWIR 和 LWIR 区域的信息。微测辐射热计作为非制冷 IRFPA 的传感元件,采用热原理运行。它们是独立的隔热传感器膜。它们吸收红外辐射并将其转化为温度上升。微测辐射热计膜的温度变化会导致电阻随入射功率的变化而变化。CMOS 读出电路将微测辐射热计随温度变化的电阻变化转换为数字值并生成图像。实现多光谱吸收的一种有前途的方法是使用等离子体超材料吸收器 (PMA)。在过去的几十年中,等离子体领域因其各种潜在应用而备受关注,尤其是在可见光谱范围内。等离子体结构的研究也已扩展到红外区域,以实现高吸收率并调整中波红外和长波红外光谱区域的吸收波长。实现适用于弗劳恩霍夫 IMS 微测辐射热计技术的合适吸收器的有希望的候选材料是金属-绝缘体-金属 (MIM) 结构,该结构由上部周期性金属结构、中间介电层和下部金属反射层组成,以在所需的吸收波长下产生强局部表面等离子体共振。材料选择,弗劳恩霍夫 IMS 研究了沉积技术和图案化工艺,以实现高灵敏度的多光谱热成像。弗劳恩霍夫 IMS 将报告其在实现多光谱红外成像方面取得的进展。它将展示用于多光谱红外成像的带有等离子体超材料吸收器的微测辐射热计的最新模拟结果和实验表征。
对正在进行的气候变化的认识不断提高,可以加速电能系统从化石燃料的电源转变为具有可再生能源的大部分地区的系统。此外,网格基础设施需要增援才能应对增加的电能需求。灵活的交流传输系统(事实)和高压直流(HVDC)传输系统允许更高的网格容量,在长距离内进行有效的传输以及海底电能传输。e孔的电池和洲际网格连接需要有效的亚地区。可以预测,使用基于SI基于SI基于SI基于SI的系统的系统相比,相比之下,利用基于SIC的半导体设备的基本电力电子构建块(PEBB)将提供转换器系统(例如,串联连接的设备数量减少,较低的连接系统,较低的能源损耗,较低的冷却脚印和较小的电台脚印)相比。本论文的主要目的是设计,评估和确定适合大功率应用的高压SIC设备的性能,需求和局限性。已经通过二维数值模拟和实验来研究SIC半导体设备的特性,以评估高功率应用中的适用性。一组校准的技术计算机辅助设计(TCAD)仿真模型被用作估算SIC销钉二极管,SIC绝缘栅极双极晶体管(IGBTS)和SIC GATE Turn-Oi虫(GTO)晶状体的性能的基础。评估静态和动态设备的性能以及相关的门驾驶员需求和Snubber设计要求。使用设备层结构,设备处理参数的物理参数以及使用混合模式仿真来研究设备的特性,这些特征是为设备性能可预测性提供了广泛数据的。此外,证明了10 kV,100 a sic金属氧化物半导体效应晶体管(MOSFET)功率模块的实验表征,并与SI对应物相对。研究了20、30、40和50 kV设备的连接终止扩展(JTE)设计方面,其中使用结果用于预测每个阻断电压类别的活动面积比。此外,TCAD模拟得出了关键操作条件(例如动态雪崩和电流信剂)的极限,这表明关键操作点的显着高于基于SI的对应物。在1 GW,640 kV,模块化多级转换器(MMC)基于基于的HVDC系统的应用程序案例中,大范围仿真数据已用于基于基准的SIC设备。与最先进的SI BI-MODE绝缘门晶体管(BIGTS)相比,通过采用SIC设备配置(BIGTS),通过采用SIC设备配置来表示能量损失减少到一半。通过降低系统复杂性,控制硬件,电缆和纤维(由于PEBB的量较低),SIC Converter Design通过降低系统复杂性,控制硬件,电缆和纤维来,与现有SI基于SI基的高功率模块化多级转换器的有希望的替代品。,与现有SI基于SI基的高功率模块化多级转换器的有希望的替代品。
一个人可以设计并自动化一个计算和实验平台,以便每个平台迭代指导并驱动另一个平台以实现预定的目标?Rapp及其同事(2024)在论文中仅描述了这种可能性,该论文详细介绍了一个自动驱动实验室的原型,该实验室可以自动导航,以产生具有所需属性的工程酶。这个实验室,而不是自动化协议,用缩写词来提及。这是指用于蛋白质景观探索的自动驾驶自动驾驶机器。本文描述了一个原型,涉及糖苷水解酶的工程,以增强热稳定性。“大脑”是该自动化系统背后的计算组件,旨在从策划的数据集学习蛋白质序列 - 功能关系。然后,通过一个全自动的机器人系统评估了这些设计蛋白,该蛋白可以合成并实验表征设计的蛋白质,并向代理(即计算成分)提供反馈,以填补其对系统的理解。因此,设计样品剂是通过在搜索过程中积极获取信息来不断地重新理解对蛋白质景观的理解。由于该智能代理从一个精心策划的,多样化的数据集中学习蛋白质序列 - 功能关系,因此根据更新的假设,这种反馈对于重新景观探索和新蛋白质的设计至关重要。在此原型中,将四个样品剂的任务承担了此目标。单个药物的搜索行为差异主要是由实验测量噪声引起的。这些药物的目标是导航糖苷水解酶景观,并以增强的热耐受性鉴定酶。然而,尽管他们的搜索行为有所不同,但所有四个代理都可以在热稳定糖苷水解酶上融合 - 这是显着的壮举,因为它显然不需要任何人类干预。为了启动迭代设计过程,Rapp及其同事用糖苷水解酶序列喂养样品,具有工程热耐受性的靶标。使用在可抑制和热固醇糖苷水解酶进行的实验中的非常最小的信息,以蛋白质耐受景观呈现样品(Romero and Arnold 2009)。蛋白质富度景观描述了从序列到类似于峰,山谷和山脊的陆地景观的映射,该目标是达到拟合度更高的自适应峰。至关重要的输入来自一个反馈周期,其中代理查询环境以收集信息,从而改善了内部对景观的看法。从这个意义上讲,蛋白质工程代理的任务是贝叶斯优化的任务,其中未知的目标函数与探索和开发之间的有效平衡(作者称为权衡)相息。样品以部署高斯工艺(GP)模型,以探索景观并提取可以描述序列水平上的可热稳定蛋白与中序蛋白有何不同的信息(Romero等2013)。使用贝叶斯优化(BO)技术,此信息启用了迭代设计蛋白质序列的样品。作者还设计了几种BO方法,以说明缺乏丰富的实验数据。这方面通常至关重要,因为人工工程/机器学习(AI/ML)工具需要一个大型,多样化的数据集有效。首先使用基于GP模型的分类器来识别功能序列,然后采用了上层信心结合算法来选择实验验证的顶级序列(Dauparas等人。2022)。使用预先合成的基因片段组装了新型工程酶,即设计的序列。该策略本身在合成生物学的高通量平台中很普遍。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。