时空生物电态调节胚胎发生的多个方面。一个关键的开放问题涉及特定的多细胞电势模式如何差异激活器官发生所需的不同下游基因。要理解空间生物启示模式,遗传学和形态之间关系的信息处理机制,我们专注于Xenopus ectoderm中的特定时空生物启用模式,以调节胚胎脑构图。我们使用机器学习设计了胚胎脑形态发生的最小但可扩展的生物电遗传学动力学网络模型,该模型定性地概括了先前的实验观察结果。该模型的因果整合分析揭示了与空间生物电和基因表达模式相关的简单高阶时空信息整合机制。该机制的具体方面包括因果分配(某些细胞位置对于集体决策更重要),信息不对称性(降压细胞比超极化细胞更具影响力),长距离影响(细胞中的基因对远方细胞的伏特效应非常敏感),并且劳动力敏感(不同的基因对不同的基因均具有敏感的基因)。该机制的不对称信息处理特征使该模型预测了调节正常胚胎脑发育的生物电预制预图中意外的可塑性和鲁棒性程度。我们的体内实验通过Xenopus胚胎中的分子操作验证了这些预测。这项工作表明了使用最小的硅方法中的力量大幅度降低体内参数空间,从而使硬生物学问题可进行。这些结果提供了对指导大规模形态发生的生物电力刺激的整体决策过程的见解,这表明了生物医学干预措施的新应用以及用于合成生物工程的新工具。
在颗粒和准颗粒的现象学水平上,超导体(伦敦,金兹伯格 - 兰道,bcs和其他理论)中的超潮流产生机制有不同的方法。在基本场上理论层面上,我们将超流动性的本质归因于包含电磁场的计量量的物理学。在经典的力学和电动力学中,该规格电位是一个主要实体,因为它没有由其他数量定义。但是,在量子力学的框架中,我们可以定义由复杂标量场定义的量子规势。量子规势可以被视为电磁场基底态的局部拓扑非平凡的激发,其特征在于指数等于磁通量的整数数量。从普通和量子计势中产生了量规不变的有效向量电势,可以像电场和磁场一样观察到。这导致了Maxwell方程的修改:尺寸长度的常数和电磁相互作用的定位。所有这些情况都赋予了识别Supercurrent的有效向量潜力的方法。我们还考虑了电磁场的新形式与Dirac Spinor场此处介绍的物质的相互作用。这种带电的费米 - 摩擦形式的特征是两个参数。从现象观点的角度来看,这些参数源自电子电荷和质量,但总的来说,它们应由系统本身定义。当然,电磁相互作用在扩展电动力学中的定位是保守的。仅当电磁场仅由带有磁通量的Quange势势呈现电磁场时。电磁相互作用的定位可以视为量子物理效应和超导性的主要物理原因。我们相信,这将有助于阐明基础野外理论方法框架中所谓的高温超导性。在任何情况下,对电磁场的新形式的实验观察(“超导光”)是第一个需要的步骤。
抽象的二维(2D)半导体材料已被广泛研究其有趣的激子和光电特性,这些特性是由强烈的多体相互作用和在2D极限下的量子限制引起的。这些材料中的大多数都是无机的,例如过渡金属二北元化,磷烯等。有机半导体材料的出色电导率和低介电系数,用于在薄膜或大量材料相中的类似应用。在薄膜和散装相中缺乏结晶度,导致了激子和电子/光节间隙特性的歧义。最近的2D有机材料的出现已经打开了一个高结晶度和受控形态的新领域,从而可以研究低洼的激子状态和光电特性。与无机2D材料中的Wannier -Mott激子相比,它们已被证明具有不同的激子特性。在这里,我们介绍了我们最近对2D有机半导体材料的实验观察结果和分析。我们讨论了单晶材料的高晶和形态控制的生长及其光电特性的作用。该报告解释了有机材料中的Frenkel(FR)和电荷转移(CT)激子以及随后的光发射和吸收特性。实验研究并讨论了源于CT和FR激子之间的相互作用,这是由CT和FR激子之间的相互作用产生的,以揭示电子带的结构。然后,我们讨论我们在J型聚集的有机材料中观察到的纯FR行为,从而导致连贯的超级激体排放。在有机材料中,激发子的超级转移,由其纯粹的fr性质促进,以及在大量分子上的激子的离域化。最后,我们讨论了这些有机2D材料的应用和视力,在快速有机发光二极管,高速激发电路,量子计算设备和其他光电设备中。
扭矩,其进动频率接近铁磁共振频率。这主要是由于磁滴模式的进动角较大[7,18,19]。然而,到目前为止,对磁滴的所有实验工作都集中在自旋阀(SV)结构[18,19,21-23]和自旋霍尔纳米振荡器(SHNO)[24,25]上。SV和SHNO中非常低的磁阻(MR)(约1%)限制了功率发射和基于STNO的任何进一步应用。相比之下,具有强PMA的磁隧道结 (pMTJ) 表现出较高的隧道磁阻 (TMR),达到 249%,尤其是双 CoFeB 自由层 (DFL) pMTJ,它已成为基于 MTJ 的 MRAM 的主要结构 [26]。因此,人们可以期望在基于 pMTJ 的 NC-STNO 中观察到磁性液滴。然而,我们之前的实验表明,在单自由层 (SFL) MTJ 中很难形成稳定的液滴 [27]。这可能是由于均匀电流密度与空间变化磁化相互作用产生的较大张-力矩所致。相反,预计 DFL pMTJ 可以抑制这种大的张-力矩并有利于形成稳定的磁性液滴。在这里,我们通过实验观察和研究了 DFL pMTJ 中的稳定磁性液滴,同时伴随着同一器件中相对于类 FMR 模式进动的功率增强。此外,通过微磁模拟,我们认为磁隧道结中的磁性液滴之所以稳定,主要是因为低的Zhang-Li力矩和DFL中强的钉扎场共同作用的结果[28]。我们的研究结果为磁隧道结中磁性液滴的成核提供了全面的认识,为进一步优化磁隧道结中磁性液滴的使用奠定了基础。
摘要:过去几十年来,人们对基于半导体薄膜、纳米线和二维原子层的光电导体进行了广泛的研究。然而,没有明确的光增益方程可以用来拟合和设计这些器件的光响应。在本文中,我们根据实验观察,成功推导出硅纳米线光电导体的明确光增益方程。硅纳米线是通过标准光刻技术在绝缘体上硅晶片的器件层上进行图案化而制成的,该晶片上掺杂了浓度为 ∼ 8.6 × 10 17 cm − 3 的硼。研究发现,制成的硅纳米线具有宽度约为 32 nm 的表面耗尽区。该耗尽区保护沟道中的电荷载流子免受表面散射的影响,从而使电荷载流子迁移率与纳米线尺寸无关。在光照下,耗尽区呈对数变窄,纳米线沟道相应变宽。光霍尔效应测量表明,纳米线光电导不是由载流子浓度的增加引起的,而是由纳米线通道的加宽引起的。因此,纳米线光电导体可以建模为与纳米线表面附近的浮动肖特基结相关的电阻器。基于肖特基结的光响应,我们推导出纳米线光电导体的显式光增益方程,该方程是光强度和器件物理参数的函数。增益方程与实验数据非常吻合,从实验数据中我们提取出少数载流子的寿命为几十纳秒,与文献中报道的纳米线中少数载流子的寿命一致。关键词:光电导体,显式增益方程,增益机制,硅纳米线,光霍尔效应 P
摘要:用超短激光脉冲对透明材料的受控处理需要详细而精确的了解,从激光能量沉积和材料内部能量转化到流体动力学弛豫和机械响应中的各种激光 - 物质相互作用机制。为了解决这个问题,我们首先基于飞秒泵和探针显微镜偏置镜开发了多时间的实验方法。泵是一个360-FS,1-μJ红外(1030 nm)激光脉冲,分开以提供515 nm的飞秒探头,并延迟可调节从飞秒到纳米秒的延迟。获得的时间分辨的阴影图像允许测量瞬态探针传输。然后,载体密度是通过使用Beer-Lambert Law和Drude模型方法来确定的,证明了大部分熔融二氧化硅内部略有临界等离子体的超快形成。并行,定量双折射图像通过使用光弹性定律来测量压力,从而通过发射GPA压力波的发射光弹性定律揭示了吸收的激光能量,这是激光脉冲后几百个picseconds。然后,使用多尺度型物理模型来解释实验观察结果,计算电子动力学,激光传播和流体动力响应。实验验证后,模拟允许确定局部基本材料特性(应力,密度和温度)的时间演变。我们的方法将来可以用来解释由超短激光脉冲引起的机械驱动的透明材料结构。实验和模拟结果的这种组合使我们能够定量讨论不同激光能量弛豫通道在发现整个相互作用情况的材料中的重要性。我们的模型预测20-GPA的最大初始应力载荷,最高晶格温度达到3.5 10 4K。我们还表明,通过发射弱冲击波,消散了总吸收激光能量的〜2%。
量子晶体学 (QCr) 是一个快速发展的领域,它将理论与实验相结合,以了解原子和分子水平上物质的基本行为。它提供的分子或晶体结构的测定质量超过了传统的 X 射线或电子晶体学方法所获得的质量。通过用丰富的电子和键合信息丰富结构信息,QCr 为合理的药物设计和新材料的工程做出了重大贡献。在本学院期间,我们将提供易于理解的深入量子力学和相关半经验方法教育,旨在为理解材料结构、物理化学性质以及材料对物理变化和实验探测的响应奠定坚实的基础。将简要回顾晶体学实验的理论基础,并详细介绍和培训量子晶体学方法的数据收集和分析方法。本学院的演讲者将超越理论计算,展示理论与实验之间的深层相互作用:例如,通过展示如何使用实验观察来限制或约束第一性原理计算,或以其他方式展示计算如何改善对实验结果的解释。为了实现这一总体目标,将强调理论和实验领域之间的协同作用,以提供对量子晶体学不同领域的整体看法。由于新的耦合方法和新社区的相互联系,这一知识领域在过去几年中经历了重要的推动。本学院将汇集这两个社区的学生,为这一新知识领域提供素材,并让学生之间的跨学科发展。研讨会将提供与主题相关的软件的使用和开发动手教程,包括开发所需的输入数据和使用案例研究。此外,学院将受益于与同时运行的电子晶体学学院的协同作用,两个学院将共享几场讲座。这将为探索晶体学在量子科学和结构研究中的跨学科应用提供独特的机会。
时空生物电态调节胚胎发生的多个方面。一个关键的开放问题涉及特定的多细胞电势模式如何差异激活器官发生所需的不同下游基因。要理解空间生物启示模式,遗传学和形态之间关系的信息处理机制,我们专注于Xenopus ectoderm中的特定时空生物启用模式,以调节胚胎脑构图。我们使用机器学习设计了胚胎脑形态发生的最小但可扩展的生物电遗传学动力学网络模型,该模型定性地概括了先前的实验观察结果。该模型的因果整合分析揭示了与空间生物电和基因活性模式相关的简单高阶时空信息整合机制,其中后者表示是细胞组伏特的因果影响的函数。该机制的具体方面包括因果分配(某些细胞位置对于集体决策更重要),信息不对称性(降压细胞比超极化细胞更具影响力),长距离影响(细胞中的基因对远方细胞的伏特效应非常敏感),并且劳动力敏感(不同的基因对不同的基因均具有敏感的基因)。该机制的不对称信息处理特征使该模型预测了调节正常胚胎脑发育的生物电预制预图中意外的可塑性和鲁棒性程度。我们的体内实验通过Xenopus胚胎中的分子操作验证了这些预测。这项工作表明了使用最小的硅方法中的力量大幅度降低体内参数空间,从而使硬生物学问题可进行。这些结果提供了对指导大规模形态发生的生物电力刺激的整体决策过程的见解,这表明了生物医学干预措施的新应用以及用于合成生物工程的新工具。
在时空中,事件 A 和 B 可以有三种因果关系:A 先于 B ,B 先于 A ,或者 A 和 B 有因果分离,即它们位于一个类空区间。量子力学允许存在与这些情况都不对应的因果结构。启发式地,这可以描绘为将 A 和 B 之间的顺序置于量子叠加中。更准确地说,已经提出了几种使用“过程矩阵”或“量子开关”来实现不确定因果顺序的方法 [1– 6]。虽然这些方法在数学上并不严格等价,但它们都支持一个基本思想:不确定因果顺序本质上是一种量子现象,它为迄今为止主要在时空理论中探索的概念提供了新的启示。最近,在几种量子开关的实现中已经通过实验观察到了这种现象 [7–12]。为了准确衡量量子理论为因果关系研究带来的新元素,可以将因果序的量子控制视为提供非经典通信优势的一种资源,即量子开关中的两个噪声信道可以比任何单个信道传输更多的信息 [13]。这种方法的好处是可以立即阐明量子开关的物理意义,但它依赖于一个目前尚未解决的问题,即任何局部方是否可以操作性地实施这种量子控制 [14]。在本文中,我们假设实证研究已经给出了一个积极的启发式方法:通过量子开关对因果序的量子控制已经通过实验获得。接下来,我们努力从理论上更好地理解此类设置所展示的优势。特别地,一个长期存在的问题涉及这种优势的起源:为了否认量子开关是一个独立的资源,有人认为,两个信道的单程量子叠加,在没有不确定因果顺序的情况下,已经导致了类似的结果[15,16]。在第二部分介绍基本的数学概念之后,我们探讨了这种非因果顺序的有争议的起源。
黑色素瘤细胞的抽象背景表型异质性有助于耐药性,增加的转移和免疫逃避性疾病。各自的机制已被据报道,以塑造广泛的肿瘤内和肿瘤间表型异质性,例如IFNγ信号传导和对侵入性过渡的增殖,但是它们的串扰如何影响肿瘤的进展仍然很大程度上难以捉摸。在这里,我们将动态系统建模与散装和单细胞水平的转录组数据分析整合在一起,以研究黑色素瘤表型异质性背后的基本机制及其对适应靶向治疗和免疫检查点抑制剂的影响。我们构建了一个最小的核心监管网络,该网络涉及与此过程有关的转录因子,并确定该网络启用的表型景观中的多个“吸引子”。在三种黑色素瘤细胞系(Malme3,SK-MEL-5和A375)中,通过IFNγ信号传导和增生对浸润性转变对PD-L1的协同控制进行了模型预测。结果我们证明,包括MITF,SOX10,SOX9,JUN和ZEB1的调节网络的新兴动态可以概括有关多种表型共存的实验观察结果(增殖性,神经CREST,类似于神经crest,类似于Invasive),以及可转化的细胞检查和响应的响应,包括对响应的响应,并在响应中进行了响应,并在响应中置于某些响应中,并在构成方面构成了对响应的响应。这些表型具有不同水平的PD-L1,在免疫抑制中驱动异质性。PD-L1中的这种异质性可以通过这些调节剂与IFNγ信号的组合动力学加剧。我们关于黑色素瘤细胞逃避靶向治疗和免疫检查点抑制剂的侵入性转变和PD-L1水平的变化的模型预测在来自体外和体内实验的多个RNA-SEQ数据集中得到了验证。结论我们的校准动力学模型提供了一个测试组合疗法的平台,并为转移性黑色素瘤的治疗提供了理性的途径。可以利用对PD-L1表达,侵入性过渡和IFNγ信号传导增殖的串扰的改进理解,以改善对治疗耐药和转移性黑色素瘤的临床管理。