短期暴露于室内空气污染物会对健康造成不利影响,需要进行实时测量。最常见的室内污染物是二氧化碳 (CO 2 )、一氧化碳 (CO)、臭氧 (O 3 )、二氧化氮 (NO 2 )、总挥发性有机化合物 (TVOC) 和直径小于 2.5 μ m 的颗粒物 (PM 2.5 )。市面上有几种低成本的室内空气质量监测仪;然而,其中很少有经过准确测试的。本文开发了一个稳定、易于使用且可重复的平台。在这些实验室条件下,低成本传感器与计算浓度之间的比较显示为线性(PM 2.5、CO 2、CO、NO 2、TVOC(乙烯)和 O 3 的 R 2 分别为 0.980、0.972、0.990、0.958、0.987 和 0.816,r s 分别为 0.982、0.985、0.900、0.924、0.982 和 0.571)。使用实验室条件测试对 TVOC 传感器的可能交叉干扰;CO 2、CO 和 NO 2 分别增加 2500 ppm、100 ppb 和 100 ppb 导致曲线拟合从线性变为二次。通过在真实室内场所的应用,对低成本传感器进行了全面验证。PM 2.5、CO 2 和 O 3 的参考方法和 uHoo 测量值之间实现了良好的相关性(r s 分别为 0.765 至 0.894、0.721 至 0.863 和 0.523 至 0.622)。
摘要:将肺暴露于环境中不同来源的机载毒物可能导致急性和慢性肺部甚至全身性炎症。香烟烟是慢性阻塞性肺部疾病的主要原因,尽管现在不发达国家的城市地区的木烟被认为是呼吸道疾病的主要原因。真菌孢子中的霉菌毒素对呼吸道疾病的职业风险构成职业风险,并对居住在潮湿建筑物中的人们造成了健康危害。石棉和二氧化硅(来自建筑材料)以及重金属(来自油漆)的微观空气中的微粒是室内空气污染的其他来源,会导致呼吸道疾病,并且已知在实验动物中引起呼吸道疾病。ricin以雾化形式是一种潜在的生物武器,它极具毒性但相对易于产生。尽管上述药物属于不同类别的有毒化学物质,但它们的致病性相似。他们诱导巨噬细胞的募集和激活,激活有丝分裂原激活的蛋白激酶,抑制蛋白质合成以及白介素-1β的产生。靶向巨噬细胞(使用纳米颗粒)或白介素-1β(使用针对蛋白激酶的抑制剂,nod样受体蛋白3或p2x7)的产生可能有可能用于治疗这些类型的肺部炎症,而不会影响对细菌感染的天然免疫反应。关键字:香烟,霉菌毒素,毛毒素,ricin,炎性症,巨噬细胞,抑制剂
这不仅是因为氡会释放到室内空气中,还因为氡及其子体在人体摄入时会造成辐射剂量。虽然只有有限数量的国家已经实施了有关水中氡含量的法规,但更多的国家正在考虑这样做。瑞典当局提出的强制限值是公共水源的氡含量不得超过 100 Bq/1,而私人水井的水不得超过 1000 Bq/1。此外,建议不要给五岁以下儿童饮用氡含量超过 500 Bq/1 的水。在瑞典,氡含量超过 1000 Bq/1 的水井数量估计超过 10,000 口,其中相当一部分超过了 10,000 Bq/1。迄今为止遇到的饮用水井中氡浓度最高为 57,000 Bq/1。氡气含量超过 500 Bq/1 的几乎全部出现在钻入基岩的井和含有山间水的泉水中。地下水氡气含量升高需要水流经铀浓度升高的基岩,或流经覆盖有含高浓度镭-226 矿物的裂缝。来自含铀岩石类型(例如富铀花岗岩、伟晶岩和硬壳岩)地区的山间水通常表现出氡气含量升高。强制氡气限值的实施导致社会要求提供有关地下水氡气风险的区域信息。建立风险地图的常规做法,重点关注
温室能源建模是优化温室能源消耗的普遍工具。然而,要使模型用于其预期用途,必须对其前命令的精确度具有很高的信心。在本文中,开发了一个经过验证的温室能量模型,用于寒冷气候中典型的小型温室。该模型是使用TRNSYS(一种建筑物性能模拟工具)创建的,具有详细的能量建模组件和用户定义的作物模型。该模型已校准以固定不确定的参数。首先使用灵敏度分析来识别明智的不确定参数,然后进行多阶段自动校准。自动校准方法使用多目标遗传算法来调整不确定的参数,从而校准测得的室内空气温度和相对湿度的模型。该模型在自由浮动和通风阶段(56天)期间表现良好,室内空气温度的均方根误差(RMSE)合并为1.6℃,空气相对湿度为8.3%。验证过程涉及使用两个附加数据集评估校准模型的适用性。在所有情况下,将模拟结果与室内环境测量结果进行比较,气温的RMSE小于2℃,空气相对湿度的RMSE小于10%;这些价值观与文献相比有利。该模型在估算最小加热温室的每月能源消耗时达到了3.7%的平均相对误差(MRE)。鉴于这些结果,该模型被认为足够准确,适用于将来的研究。
•支持进入空气过滤系统和口罩的访问,以确保我们在野火事件中以及污染保持较高后保护儿童。当空气质量水平不安全时,婴儿和儿童(尤其是无法戴口罩的最小的孩子)应该避免在户外,并且应该可以使用清洁空气进入室内空间。空气过滤系统应使用高效率过滤器来防止尽可能多的空气颗粒到达肺部 - 术语面具,band骨和具有较低质量或未清除过滤器的系统是不够的。在需要口罩的情况下,重要的是要注意,口罩不是为婴儿和幼儿的脸而设计的,不应依靠适当保护野火烟雾的影响。至关重要的是,护理人员和可以佩戴的孩子的面具应为N95或更高。•在年幼的孩子花时间的地方创建干净的空间。学校,育儿中心,企业和其他地方,婴儿和幼儿花时间应适应清洁的空气庇护所,可以在野火期间提供保护:应予以良好的窗户以防止户外空气进入,并应将中央空调系统安装在室外空气中,并与Merver insive Merver contecters contection in willfire smoke in willfire smoke in willfire smoke in willfire smoke in willfire smoke。当使用便携式空气清洁器清洁室内空气时,应适当尺寸用于清洁房间。在野火后必须更改便携式单元中的过滤器,因为与烟雾的反应会使它们的效果降低。19,21
欧洲绿色协议 [ 1 ] 包括欧洲与温室气体 (GHG) 排放相关的新的雄心勃勃的目标,以迈向气候中性经济并履行《巴黎协定》中的承诺 [ 2 ]。这些 2030 年的关键目标包括与 1990 年的水平相比减少至少 40% 的温室气体排放量,实现至少 32% 的可再生能源份额,并将能源效率提高至少 32.5%。通过这些目标,欧洲旨在成为第一个气候中性的大陆。这项新战略中强调的关键行动是能源部门的脱碳,这显然需要更多地使用可再生能源和实施更多的能源存储,并确保建筑物更加节能 [ 3 ]。这可以通过将绿色和智能技术融合到绿色智能建筑 (GSB) 中来实现,正如 Pramanik 等人所建议和讨论的那样。[ 4 ]。然而,楼宇自动化控制系统是必不可少的,尤其是在复杂系统中,例如 Liberati 等人报告的系统。[5] 在该研究中,经济模型预测控制方法用于处理智能建筑中电力和供热资源的管理问题,以实现近乎零的能耗和自动参与需求响应计划。Gonçalves 等人提出了一种智能监督预测控制 (ISPC) [6],以在不牺牲建筑居住者热舒适度的情况下最大限度地降低能耗。事实证明,所提出的方法能够协助商业建筑中的监督预测控制进行实时应用。Dong 等人报告了传感器在建筑环境中的重要性及其对节能、热舒适度和视觉舒适度以及室内空气质量的影响的全面回顾。考虑到这些目标,开发了一个新概念,即利用大量可再生能源(太阳能)为建筑供暖和生活热水 (DHW)
生物技术是室内空气污染物减排的可行替代方法。在生物技术中,生物活性涂层由嵌入聚合物基质中的微生物组成,允许微生物与气体污染物之间直接接触,从而增加了它们的减排。三个生物反应器(BR1,BR2和BR3)被VOC降解的富含培养物接种,乳胶生物活性涂层含有富含VOC的富含培养物,以及带有新鲜活性污泥的乳胶生物活性涂层。评估了空床停留时间(EBRT)和入口浓度对去除甲苯,α-苯乙烯和N-己烷的去除的影响。BR1和BR2实现了稳态甲苯和Pinene去除量> 90%降至30 s。 BR3较低的降低可能是因为缺乏活性污泥的适应能力。在EBRT 15 s时,进口浓度可显着降低至<2 mg m-3时,甲苯去除量在BR1和BR2中增加到> 80%,但在BR3中仅增加到64.2%。Pinene emovals在BR1中达到90.9%,BR2和BR3的去除量> 70%。 细菌种群以BR1和BR2中的犀牛,分枝杆菌,恶魔和杜鹃花成员为主。 无论接种物或操作条件如何,都无法使用显着且坚固的己烷去除,这可能是由于传质限制所致,这具有这种新陈代谢能力的较低的生物体优势。Pinene emovals在BR1中达到90.9%,BR2和BR3的去除量> 70%。细菌种群以BR1和BR2中的犀牛,分枝杆菌,恶魔和杜鹃花成员为主。无论接种物或操作条件如何,都无法使用显着且坚固的己烷去除,这可能是由于传质限制所致,这具有这种新陈代谢能力的较低的生物体优势。
关于电动汽车电池逆向物流建模和德里电动三轮车运营的研究项目。开展了几个具有社会影响力的政策重点项目,包括将老式经典/复古汽车改装成电动汽车以鼓励电动汽车改装初创企业、传播德里室内空气质量调查结果以制定印度的室内空气质量标准、与 NASA 合作开展公民科学项目通过公民参与使用低成本传感器监测空气质量、与世界银行和国际应用系统分析研究所合作为印度恒河平原开发空气质量管理模型、与联合国环境规划署、TERI 和 CPCB 合作为印度编写空气质量状况报告。CERCA 还领导着德里市科学技术集群 (DRIIV) 空气污染主题项目。CERCA 开展的其他值得注意的举措包括空气污染健康风险研究(在印度-波兰、印度-英国和 CAPHER-印度项目下)、各个未达标城市的源分配研究以及印度发电厂对新 SO 2 排放标准的遵守情况以实施烟气脱硫。 CERCA 是 NCAP 国家知识网络的合作伙伴,该网络已建立国家空气污染数据库以进行空气质量管理,并通过研讨会/圆桌会议/展览定期与社区互动,包括每月的 CERCA 专家讲座/时事通讯,还支持西孟加拉邦、比哈尔邦和中央邦污染控制委员会实施清洁空气行动计划。CERCA 积极与 Umeandus/Honeywell/Camfill/Tadpole/Sharp 等多家行业参与者合作,包括 IITD 孵化的初创企业,以开发低成本的清洁空气技术。自 2018 年成立以来,CERCA 已在国内外主要期刊上发表了 25 多篇研究论文。
EOS/ESD 研讨会杰出论文奖(最佳演讲) EOS/ESD 研讨会杰出论文奖颁发给个人或团体,以鼓励他们在论文撰写和演讲中付出巨大努力,力求达到技术卓越。该奖项由 EOS/ESD 研讨会与会者投票选出,评选标准包括原创性、与实践或进一步研究的相关性、对概念、理论和发现的批判性分析以及演讲的清晰度。奖项分为制造和设备类别。 1983 年“室内空气电离系统,比 40% 相对湿度更好的替代方案” CF Mykkanen 和 DR Blinde 1984 年“防静电袋在筛选半导体元件免受 ESD 瞬变影响方面的有效性” TIE GC Holmes 1984 年“现实而系统的 ESD 控制计划” GT Dangelmayer 1985 年“一种实时检查集成电路中表面下 EOS/ESD 损伤的技术” CT Amos 和 CE Stephens 1986 年“厚氧化物器件在工艺变化下的 ESD 性能” RA Mc Phee、C. Duvvury、RN Rountree、H. Domingos 1987 年“可抵御带电器件模型 (CDM) 的 ESD 保护结构” LR Avery TIE 1988 年“适用于先进 CMOS 工艺的工艺容错输入保护电路” Robert Rountree、Charvaka Duvvury、Tatsuro Maki、Harvey Stiegler 1988 “摩擦电和表面电阻率不相关” Steven L. Fowler 1989 “理解粉红聚合物” Marvin R. Havens 1990 “4 Mbit DRAM 的静电放电保护” Mark D. Jaffe 1991 “实施基于计算机的 ESD 培训:比较计算机方法与传统课堂技术的案例研究” Joanne Woodward-Jack
I. 平面图和规范 明尼苏达州规则 1300 A. 基本平面图信息 明尼苏达州规则 1300 II. 能源法规(外壳标准) 2020 住宅能源法规 A. 室内空气屏障 2020 住宅能源法规 B. 风洗屏障 2020 住宅能源法规 C. 防潮层 2020 住宅能源法规 D. 隔热层 2020 住宅能源法规 E. 窗户(门窗)开口 2020 住宅能源法规 F. 机械/被动通风 2020 住宅能源法规 III.建筑规划/生命安全 2020 住宅规范 A. 出口方式 2020 住宅规范 B. 楼梯 2020 住宅规范 C. 烟雾报警器 2020 住宅规范 D. 必需的出口门 2020 住宅规范 E. 房屋与车库之间的墙壁 2020 住宅规范 F. 安全玻璃 2020 住宅规范 G. 自然光和通风 2020 住宅规范 H. 最低天花板高度 2020 住宅规范 I. 更换窗户 2020 住宅规范 IV。现场工作 2020 住宅规范 A. 土壤 2020 住宅规范 B. 勘测 2020 住宅规范 C. 挖掘(Gopher One Call)2020 住宅规范 D. 填充/土壤校正 2020 住宅规范 E. 侵蚀控制 2020 住宅规范 F. 回填 2020 住宅规范 G. 防霜冻 2020 住宅规范 V. 混凝土和砖石基础和地基 2020 住宅规范 A. 混凝土强度 2020 住宅规范 1. 外加剂 2020 住宅规范 2. 规范 2020 住宅规范 3. 引气 2020 住宅规范 B. 养护 2020 住宅规范 C. 地基墙设计 2020 住宅规范