专业冷藏柜 (PRSC) 于 2003 年被添加到能源技术清单 (ETL) 的制冷类别中。本指导说明旨在与 PRSC 的标准一起阅读。它详细描述了如何计算 PRSC 的净容积。产品申请应遵循这种方法,并包括计算结果和图纸,以说明如何计算相关产品的净容积。指导说明 8 用于计算专业冷藏柜净容积的目的指导说明 8 的目的是帮助减少上次审查 PRSC 时发现的净容积计算差异。同样,本说明旨在降低不合规申请被拒绝的可能性。计算专业冷藏柜净容积的过程净容积计算如下:可装载食物的可用搁板面积乘以可装载食物的可用高度减去搁板高度。图 1 说明了这种方法。如果搁板具有不影响其面积的夹式支撑或模制支撑,则整个搁板可视为可用于装载。如果搁板由“C”型材支撑,则支撑的面积可以计入,只要它们不限制食品的装载。如果搁板凹进柜壁,则凹进区域不可用于装载食品。如果支撑确实影响搁板面积,则只能包括可用于装载食品的可用搁板面积。必须从计算的净体积中扣除任何其他突出到可用空间的体积。因此,制造商应使用表 1 来指示其搁板附件的类型和相应的宽度。
(2) 与 FSS Code 5、6 和 9 相关的 UI(见附件 14) - 关于 FSS Code 第 5 章 2.2.1.7 款规定的分三阶段释放二氧化碳的控制装置,明确了释放量不取决于每个货舱空间的各自容积,而是取决于最大货舱空间的容积。- 关于固定泡沫灭火系统的泡沫产生能力,明确了确定 A 类机器处所“最大保护空间”大小时应采用的标准(基于 IACS UI SC262)。- 对于需要为固定式火灾探测和火灾报警系统安装附加货物控制台的货物控制室,明确了安装货物控制台的房间即使不作为专用货物控制室,也应被视为货物控制室。(基于 IACS UI SC271)。
(2) 与 FSS Code 5、6 和 9 相关的 UI(见附件 14) - 关于 FSS Code 第 5 章 2.2.1.7 款规定的分三阶段释放二氧化碳的控制装置,明确了释放量不取决于每个货舱空间的各自容积,而是取决于最大货舱空间的容积。- 关于固定泡沫灭火系统的泡沫产生能力,明确了确定 A 类机器处所“最大保护空间”大小时应采用的标准(基于 IACS UI SC262)。- 对于需要为固定式火灾探测和火灾报警系统安装附加货物控制台的货物控制室,明确了安装货物控制台的房间即使不作为专用货物控制室,也应被视为货物控制室。(基于 IACS UI SC271)。
• 传感器数量有限,覆盖不完整 • 生理伪影和环境噪声 • 容积传导 • 对深/浅或径向/切向源的敏感度不同 • EEG 中的参考效应
新兴证据强调了心脏和大脑动态之间的双向、复杂和非线性交流。虽然一些研究已经应用人工智能根据静态 EEG 和 PPG 特征来区分和分类情绪,但很少有研究关注不同情绪状态下这些相互作用的网络元素。本研究使用来自 DEAP 数据集的数据(其中包括参与者观看情感唤起音乐视频时记录的 EEG 和 PPG 信号),应用了一种新颖的网络分析方法来研究大脑节律和 PPG 特征(幅度、峰峰间隔和脉冲宽度幅度)之间的动态相互作用。部分互相关的时间延迟稳定性用于识别情绪状态。在情感状态下,EEG 节律与 PWA 和 PPI 之间存在显着相关性(p <0.05)。然而,PPI 或 PWA 影响 EEG 波段的反向关系并不显着。此外,PPG 振幅与 EEG 节律之间的相关性(反之亦然)并未显著区分情感状态,这表明 PPG 振幅对情绪状态的指示性不如 PPI 或 PWA。研究结果确立了 EEG-PWA 和 EEG-PPI 连接是情感状态的可靠指标,并为开发可解释的基于图的情绪识别系统提供了见解。
缩写:F,绝对生物利用度;Tmax,达峰浓度时间;t1/2,消除半衰期;AUC,浓度-时间曲线下面积;Vd/F,表观分布容积;CL/F,表观口服清除率;Ctrough,谷浓度
FEA 网格中的推进剂。在每个 LS-DYNA 时间步骤中,CADPROG 使用从 LS-DYNA 模拟反馈的运动数据(冲程、速度、腔室容积)进行分析运行。然后将计算出的压力以交互方式应用于活塞或 LS-DYNA 模型中的任何适用表面网格。
5.5.1 机械 POE 的 HEMP 保护 ...................................................................... 26 5.5.2 管道 POE .............................................................................................. 26 5.5.3 通风 POE .............................................................................................. 26 5.5.4 机械 POE 保护装置的验收测试 ...................................................... 28 5.6 结构 POE ............................................................................................. 28 5.6.1 结构 POE 的 HEMP 保护 ...................................................................... 28 5.6.2 结构 POE 处理的验收测试 ...................................................................... 28 5.7 电气 POE 和长线保护模块 ............................................................................. 29 5.7.1 电气 POE ............................................................................................. 29 5.7.1.1 电气 POE 的 HEMP 保护 ............................................................................. 29 5.7.1.2 站点内电源线 POE 保护装置要求 ............................................................. 29 5.7.1.3 站点内控制、信号和5.7.1.4 天线线路 POE 保护装置要求............................................................................... 39 5.7.1.4.1 仅接收天线线路 POE 保护装置的核心导体注入要求....................................................................... 39 5.7.1.4.2 发射天线线路 POE 保护装置的核心导体注入要求....................................................................... 39 5.7.1.4.3 天线线路 POE 保护装置的屏蔽注入要求....................................................................................... 40 5.7.1.5 电气 POE 保护装置的验收测试.................................................................................... 40 5.7.2 长线保护模块............................................................................................. 40 5.7.2.1 LLPM 的一般要求............................................................................................. 41 5.7.2.2 电力线 LLPM 要求............................................................................................. 41 5.7.2.3 控制、信号和数据线 LLPM 要求............................................................................. 41 5.7.2.4 LLPMs................................................................................ 46 5.8 特殊保护措施................................................................................ 46 5.8.1 子系统电磁屏障之外的 MCE........................................................ 46 5.8.1.1 子系统电磁屏障之外的 RF 通信天线......................................................................... 47 5.8.2 位于子系统电磁屏障内部且未通过验证测试的 MCE..... 47 5.8.3 特殊保护容积.................................................................... 47 5.8.3.1 管道 POE 的特殊保护容积........................................................................ 47 5.8.3.1.1 特殊波导要求 .............................................................................. 47 5.8.3.1.2 管道 POE 的特殊防护屏障 .............................................................. 49 5.8.3.2 电气 POE 的特殊防护容积 .............................................................. 49
摘要:及时发现并采取积极措施避免中风至关重要,因为这种疾病很可能导致严重残疾或致命后果。对于缺血性和出血性中风,必须及时使用适当的溶栓或抗凝药物。关键的初始阶段围绕及时识别中风的初始指标(个体之间可能有所不同)并在规定的治疗窗口内及时寻求医疗干预。本研究介绍了一种基于机器学习的系统,该系统采用实时测量心电图 (ECG) 和光电容积描记法 (PPG) 数据来以有意义的方式预测和解释中风预后症状。为了实现实时中风预测,我们开发并实施了一种集成结构投票分类器,该分类器结合了 SVM、随机森林和决策树分类器。这种方法可以准确预测患者的中风诊断,并且可以通过利用患者的 ECG 和 PPG 属性数据轻松实施。关键词:深度学习、机器学习、心电图(ECG)、光电容积描记法(PPG)、实时脑卒中预测