正常生命力:HR:100-180,RR:30-60,收缩BP:60-100 mmHg,Bg> 60 mg/dl复苏药物 - (确认浓度是指定的剂量体积肾上腺素剂量肾上腺素(1 mg/10 mg/10 ml填充的syringe syringe Q 3-3-5 m)0.0 0.0 0.0 0.000.000.100.000.100.1000.100.100.1000.1000.100。抗抗震V-FIB(或宽宽复合心动过速*)25 mg 0.5 ml Lidocaine(100 mg/5 ml)IV/IO iv/io(150 mg/3 mL)IV/IO,可击击的V-FIB(100 mg/5 ml)IV/IO,可击击V-fib(可震动的V-fib(或宽宽)(或宽宽)tachycardia*)6 mg 0.3 mg 0.3 mg/ig/ig/i.3 ml atropim/ltropiv/ltropine intropine(1 Ml)1 M ltropiv/1 M ltropopine(1 Ml)1 Ml a tropopine(1 Ml)1 M ltropiv心动过缓对肾上腺素无反应0.1 mg 1 ml *腺苷(6 mg/2 mL)IV/IO 1st剂量。0.1 mg/kg。 SVT(HR> 220)0.5 mg 0.2 ml *腺苷(6 mg/2 mL)IV/IO 2nd剂量。 SVT(HR> 220)1 mg 0.4 ml肾上腺素IV/IO(1 mg/10 ml)推剂 - 稀释剂量 - 稀释1 ml,用9 ml盐水= 10 mcg/1 ml 5 mcg 5 mcg 0.5 mc 0 mcg 0.5 ml(稀释)0.1 mg/kg。SVT(HR> 220)0.5 mg 0.2 ml *腺苷(6 mg/2 mL)IV/IO 2nd剂量。SVT(HR> 220)1 mg 0.4 ml肾上腺素IV/IO(1 mg/10 ml)推剂 - 稀释剂量 - 稀释1 ml,用9 ml盐水= 10 mcg/1 ml 5 mcg 5 mcg 0.5 mc 0 mcg 0.5 ml(稀释)
•愉快而无缝的用户体验可以增加用户的保留和参与度。•例如,脑部整合互动元素和游戏化,以使学习更具吸引力,鼓励持续使用。•可访问的解决方案有助于吸引在互联网连接可能受到限制的农村或服务不足的地区的学习者。解决方案在移动设备和低型宽宽条件下(例如汗学院的离线功能)可以很好地运行,可以为资源有限的学习者提供宝贵的教育访问权限。
监视每个单独的逆变器腿使用低侧电流传感拓扑,而无需隔离放大器就可以完成,因为每条腿的共同模式电压接近零。有三种方法可以实现低端电流感应。一,二或三转的拓扑。虽然单次测量技术趋向于更高的带宽要求,但三转解决方案要求较低的速度,通用物质放大器(例如TLV9061-Q1),因为您能够单独监视每条腿。在OBC系统中准确的电流传感的一项重要要求是确保定居时间尽可能短,这就是为什么建议将TLV9061-Q1(10 MHz Unity增益宽宽放大器(1 µs沉降时间))以使该应用程序快速响应电流的变化。
要克服常规调节器的带宽限制,可以采用等离子设备。等离子调节剂已显示可运行高达500 GHz [8],因此是用于此类高宽宽应用的理想解决方案。最近通过微环谐振器调制器(MRR)[9]和高达363 GBIT/s的净数据速率(MACH-ZEHNDER调制器(MZM)[10])已被证明。这些等离子调节剂基于硅光子(SIPH)平台,因此可以无缝地集成到标准的SIPH过程中以进行整体整合。这有望通过共包装[11],启用小占地面积[12]和低驾驶电压[13]来进一步改进,这是400 Gbit/s tranceivers的理想候选者。然而,单个载体IM/DD演示仍缺少血浆以上的血浆以上。
摘要:最近已经建立了在硝酸硅中制造固有的单光子发射器的强大过程。这些发射器显示出由于室温运行和与技术成熟的氮化硅光子学平台的整体式整合而导致的量子应用的希望。在这里,通过测量光学跃迁波长,线宽和光子抗激素的基本光物理特性,探测了从4.2K到300K的温度的函数。通过测量零孔子线的不均匀和温度依赖性的均匀宽扩大,提供了对终身有限线宽潜力的重要见解。在4.2K时,发现光谱扩散是主要的宽扩向机理,而时间分辨的光谱测量结果揭示了具有仪器限制线宽的零孔子线的均匀宽宽。
在太阳宽宽(良性深色皮肤斑点)和2型糖尿病的发生率之间,存在统计证明的正相关 - 糖尿病患者具有更多的太阳宽剂。都取决于长时间暴露于太阳辐射。仍然存在逻辑上的矛盾 - 而暴露于旷日持久的太阳辐射的太阳能宽元的频率会增加,其中糖尿病不太常见,因此,这两种疾病是负面的,不是阳性的,不积极的,相关的。如果人们认为两种疾病都取决于迄今与太阳辐射相关的公共风险因素,则可以解决争议,而不是电磁辐射,而不是可见的(光)和紫外线辐射。与欧洲和地中海死亡率统计的例子相结合,与卫星观测的数据相结合,发现所寻求的常见风险因素可能是高能太阳能α辐射到达地球轨道。通过某种机制,具有高能量进入地球轨道的带正电颗粒的流流增加了地球表面的死亡率。死亡率的增加在北半球的最大风险区域,平行于赤道,并由30°和50°北纬50°的相似之处界定。为内分泌,营养和代谢疾病(尤其是糖尿病)的欧盟死亡率提供了例子,证实了所描述的现象。已经提出了一种基于观察证据的假设机制,根据该机制,这种危险现象是由于高能量的太阳能α颗粒所致,足以克服大气的抵抗力并在有限的最大死亡影响区域中到达地球表面。
摘要:这项研究旨在了解烹饪时间中涉及的遗传成分如何从第一代自我剥夺到线的形成。使用了两个靶向十字,导致在不同的杂合度水平(F 2,F 3,F 8和F 9)下隔离后代。使用Mattson Cooker确定烹饪时间。方差成分,并使用Cockerham方法计算了添加剂和非加性级分。此外,还进行了比例测试,包括近交作为遗传参数。不管测试的分离族中的分层差异模型如何,优势成分的高度至少是添加剂方差分数的两倍。这也通过比例测试证实了这一点,其优势在添加剂成分上的优势主要在不同的商业组(Carioca X Black)之间的交叉处,在该添加剂分量为零。此外,这导致了较低的宽宽遗传性系数,表明非遗传原因的影响更大。优势在烹饪时间中的作用意味着需要在高级近亲阶段选择基因型,但是在此阶段,应通过选择烹饪时间较短的父植物来表示变化。关键词:Cockerham方法,加权最小二乘法,方差组件,选择,近交。
[5]郭,Yuan等。基于“尺寸调制工程”降低低频微波吸收的促进导电损耗和磁耦合。Small,2023,E2308809。[6] Li,Shuangshuang等。基于石墨烯的磁复合泡沫,具有分层多孔结构,可有效地吸收微波。碳,2023,207:105-115。[7] Zhang,X。等。金属离子被限制在MOF的周期性孔中,以嵌入层次多孔碳纳米流中的单金属原子,以进行高性能电磁波吸收。高级功能材料,2023,33,2210456。[8] Zhu,J等。基于多元素异质组件的多孔结构纤维,用于优化电磁波吸收和自我抗腐蚀性能。Small,2024,240368。[9] Deng,Y。等。 一种新颖而便捷的到合成的三维蜂窝状 - 像纳米-FE 3 O 4 @C复合材料:电磁波吸收宽,带宽宽。 碳,2020,169:118-128。 [10] Meng,X。等。 三维(Fe 3 O 4 /ZnO)@C双核@shell多孔纳米复合材料具有增强的宽带微波吸收。 碳,2020,162:356。 [11] Hu,R。等。 在熵驱动的双磁系统中增强了电磁能量,用于上电磁波吸收。 高级功能材料,2024,2418304 [12] Li,Xiao等。 碳,2023,210(15):118046。 [13] Li,S。等。 碳,2023,207:105-115。 [14] Yang,W。等。[9] Deng,Y。等。一种新颖而便捷的到合成的三维蜂窝状 - 像纳米-FE 3 O 4 @C复合材料:电磁波吸收宽,带宽宽。碳,2020,169:118-128。[10] Meng,X。等。三维(Fe 3 O 4 /ZnO)@C双核@shell多孔纳米复合材料具有增强的宽带微波吸收。碳,2020,162:356。[11] Hu,R。等。在熵驱动的双磁系统中增强了电磁能量,用于上电磁波吸收。高级功能材料,2024,2418304 [12] Li,Xiao等。碳,2023,210(15):118046。[13] Li,S。等。碳,2023,207:105-115。[14] Yang,W。等。磁阵列垂直锚定在具有“魔法角”的柔性碳布上,以增加有效的吸收带宽并同时改善反射损失。基于石墨烯的磁复合泡沫,具有分层多孔结构,可有效地吸收微波。磁耦合工程的多孔介电碳在超大填充物中,朝向可调和高性能的微波吸收。材料科学技术杂志,2021,70:214-223。[15] Pang,X。等。基于石墨烯,碳纳米管和Fe 3 O 4多维复合材料的电磁吸收特性的优化。聚合物组合,2024,45(9):8414-8425。[16] Zhao,Y。等。在CNT@NICO化合物中同时优化传导和极化损失,以吸收上电磁波吸收。材料科学技术杂志,2023,166:34-46。
巴伦将单端信号转换为平衡信号,广泛用于射频前端模块,如倍频器、混频器等,它们利用差分信号来消除共模信号并改善端口隔离。巴伦的关键性能规格包括插入损耗、幅度/相位平衡和芯片尺寸。这些参数在毫米波 (MMW) 电路和系统的设计中非常重要 [1]。Marchand 巴伦 [2-10] 利用两个耦合线段,由于其工作带宽宽且易于实现,在 MMW 频率电路设计中得到广泛应用。在 [2] 中,提出了一种基于改进的离中心频率法的非对称宽边耦合 Marchand 巴伦。它实现了 34-110 GHz 的带宽;然而,它的插入损耗很高,平均约为 3 dB。为解决不平衡性能问题,还设计了另一种带有偏置半径线圈的30 GHz至60 GHz变压器巴伦[11]。结果显示,幅度不平衡为0.12 dB,相位不平衡小于1 ◦;但最大插入损耗约为3 dB。一种小型化片上Marchand巴伦[12]基于堆叠螺旋耦合(SSC)结构,带有自耦合补偿线和带深沟槽的中心抽头接地屏蔽,设计用于6.5 GHz至28.5 GHz的宽带工作,但测得的最大插入损耗为3 dB。宽带工作和幅度/相位不平衡一直是先前报道的文献的重点,同时以巴伦插入损耗为代价。在本文中,介绍了一种具有低插入损耗的新型Ka波段Marchand巴伦的设计,同时实现了宽带工作和可接受的不平衡性能。所提出的巴伦采用边耦合和宽边耦合组合结构来增强主信号和次信号之间的耦合,从而在 29.0 GHz 至 46.0 GHz 的 1 dB 带宽内实现了 1.02 dB 的测量低插入损耗。第 2 节介绍了巴伦的详细分析和所提出的巴伦设计,第 3 节讨论了实验结果并与最新技术进行了比较,第 4 节得出结论。