Purify 被放置在一个 10m3 的密封空间内,并设置高速风扇。将不同组污染物喷入密封室内。在测试期间控制温度和湿度。结果显示空气中微生物的自然腐烂已被消除。两小时后,使用六目型空气微生物采样器进行测试。
对于非线性光学材料作为有效的宽带Terahertz(THZ)波发电机,在THZ频率范围内具有较大透明度的低吸收器非常重要。在这项研究中,我们报告了有效的有机THZ波发电机,2-(4-羟基霉菌 - 霉菌)-1-甲基喹啉4-溴苯磺酸盐(OHQ-BBS)单晶。有趣的是,OHQ-BBS晶体在THZ频率区域的无分子振动模式范围从1.7到5.1 THz,吸收系数<20 mm-1。通过光学整流使用1300 nm波长的130 FS泵脉冲,OHQ-BBS晶体在1.2-5.5 THz的范围内生成极宽,无凹坑的THZ波。此外,还达到了从广泛使用的Znte无机晶体产生的场高20倍的THZ电场。因此,OHQ-BBS单晶是多个THZ光子应用的高度有希望的材料。
摘要:等效电路模型 (ECM) 是模拟锂离子电池行为以监控和控制它们的最常用技术。此建模工具应足够精确以确保系统的可靠性。影响 ECM 精度的两个重要参数是施加的电流速率和工作温度。如果不彻底了解这些参数对 ECM 的影响,则应在校准过程中手动进行参数估计,这是不利的。在这项工作中,开发了一种增强型 ECM,用于高功率锂离子电容器 (LiC),适用于从 −30 ◦ C 的冻结温度到 +60 ◦ C 的高温,施加的电流速率为 10 A 至 500 A。在此背景下,通过对具有两个 RC 分支的 ECM 进行建模,进行了实验测试以模拟 LiC 的行为。在这些分支中,需要两个电阻和电容 (RC) 来保持模型的精度。验证结果证明,半经验二阶 ECM 可以高精度地估计 LiC 的电气和热参数。在此背景下,当电流速率小于 150 A 时,开发的 ECM 的误差低于 3%。此外,当所需功率较高时,在 150 A 以上的电流速率下,模拟误差低于 5%。
广谱除草剂耐药性(BSHR)通常与基于新陈代谢的除草剂耐药性有关,对粮食生产构成威胁。过去的研究表明,催化性混杂酶的过表达解释了某些杂草中的BSHR。然而,BSHR表达的机制仍然很少理解。在这里,我们研究了在美国发现的BSHR晚期水草中高级抗性甲基的分子基础(echinochloa phyllopogon),在美国发现,这不能完全通过过度表达的散布性细胞色素P450单一单胶酶Cyp81a12/212/21。BSHR后期水草线迅速产生了2种不同的羟基化双洛未甲酸,其中1个是CYP81A12/21产生的主要代谢物。RNA-SEQ和随后的逆转录定量PCR(RT-QPCR)基于基于基因CYP709C69的转录连接的过表达,在BSHR线中鉴定出具有CYP81A12/21的转录连接的过表达。该基因在植物中赋予了双洛牛甲基耐药性,并在酵母(酿酒酵母)中产生了另一种羟基化的双氯氟取酸。与CYP81A12/21不同,CYP709C69没有其他除草剂 - 代谢功能,除了推测的cloma-groma Zone激活功能。在日本的另一个BSHR后期水草中也发现了3种除草剂 - 代谢基因的过表达,这表明分子水平的BSHR进化会融合。对P450基因的同义分析暗示它们位于相互独立的基因座,该基因座支持单个反元元素调节3个基因的想法。我们提出,与除草剂 - 代谢基因的转录连接的同时过度表达增强并扩大杂草中的代谢性。来自2个国家的BSHR晚期水草中复杂机制的收敛性表明,BSHR通过在晚期水草中选择保守的基因调节系统而发展。
1.概述在实现易于宽松的通用通用量子计算机方面面临的硬件挑战之一是,要实现错误校正的代码需要大量的物理量子,并且对于超导量子的代码,据说该数字是巨大的(10 8)(10 8)(典型的误差率(〜0.1%),将造成QUIND(〜0.1%)。通过研究错误的原因并根据这项研究开发高质量的Qubit制造技术来避免错误通用量子计算机。此外,由于当前的制造方法(电子束暴露和倾斜沉积方法)在生产率和量子均匀性方面对未来的大型电路提出了挑战,因此我们将使用光学曝光和堆叠过程开发Qubit Gruncation技术。我们还将对玻色粒代码进行探索性研究,该研究有望与当前主流表面代码相比,具有较少的物理Qubits的抗误量计算,以识别可能性和有希望的方案。我们还将对核代码进行探索性研究,该研究有望与当前主流表面代码相比,具有较少的物理QUBIT的抗错量子计算,以识别可能性和有希望的方案。
然而,在实现基于LLZ的ASSB的主要挑战中,具有促进电池操作的属性的阴极/LLZ界面形成,例如低界面电阻和良好的接触。因此,LLZ的densi cation采用了高于1000°C的温度下的犯罪策略,以增强其对LI金属的离子电导率和稳定性。然而,这种高温犯罪不可避免地会导致形成高电阻的电极/LLZ相间,从而导致电池较差。12,13可以通过两条路线形成阴极/LLZ接口。在第一个路径中,涉及将阴极层涂在烧结的LLZ磁盘上,LLZ在升高的温度下呈密密度密度,然后使用诸如筛网印刷和浸入等方法与阴极层涂层,并且所得的PORTODE/LLZ系统是在低温到
• 数据速率:DC 至 150Mbps • 坚固的隔离屏障 长使用寿命:>40 年 高达 5000 V RMS 隔离额定值(宽体封装) ±150 kV/μs 典型 CMTI • 宽电源范围:2.5V 至 5.5V • 宽工作温度范围:-40°C 至 125°C • 无需启动初始化 • 默认输出高 (CA-IS372xH) 和低 (CA-IS372xL) 选项 • 高电磁抗扰度 • 低功耗 1Mbps 时每通道 1.5mA,V DD = 5.0V 100Mbps 时每通道 6.6mA,V DD = 5.0V • 最佳传播延迟和偏斜 12ns 典型传播延迟 2ns 传播延迟偏斜(芯片到芯片) 1ns 脉冲宽度失真 5ns 最小脉冲宽度• 施密特触发器输入 • 封装选项 窄体 SOIC8(S) 封装 宽体 SOIC8(G) 封装 宽体 SOIC16(W) 封装 • 安全法规认证 VDE 0884-17 隔离认证 UL 符合 UL1577 要求 IEC 62368-1、IEC 61010-1、GB 4943.1-2011 和 GB 8898-2011 认证
在 2024 年 12 月 18 日下午 5:00(纽约时间)或之前有效投标且未有效撤回的票据,除非延期(该时间和日期可延期,称为“提前投标截止日期”),将有资格获得每 1,000 美元投标票据本金 1,021.90 美元的购买价,包括每 1,000 美元投标票据本金 30.00 美元的提前投标付款。在提前投标截止日期之后但在 2025 年 1 月 6 日下午 5:00(纽约时间)或之前有效投标且未有效撤回的票据,除非延期或提前终止(该时间和日期可延期,称为“到期时间”),将有资格获得每 1,000 美元投标票据本金 991.90 美元的购买价。投标持有人还将收到自上一付息日起至适用结算日(不包括该日)的应计未付利息。在提前投标截止日前有效投标且未有效撤回的票据的结算预计将于 2024 年 12 月 20 日进行,在提前投标截止日之后但在到期日或之前有效投标且未有效撤回的票据的结算预计将于 2025 年 1 月 8 日进行,在每种情况下,均假设我们不会延长提前投标截止日和到期日,并且我们不会终止要约收购。
dz2 方向的键与 d xy 平面上的键结合,从而显著减轻 JT 畸变并抑制放电至 2.0 V 时的相变。按照这种策略,制备的尖晶石基正极实现了约 290 mA hg -1 的高可逆容量和高达 957 W h kg -1 的能量密度,并且循环稳定性得到改善。这项工作为传统尖晶石正极以低成本和可持续的方式应用于高能量密度 LIBs 找到了新的机会。关键词:锂离子电池;尖晶石基正极;局部结构连接;限制 Jahn-Teller 畸变;高能量密度。1. 简介为了应对电动汽车 (EV) 和电网储能系统 (PGESS) 对锂离子电池 (LIBs) 日益增长的需求,关键挑战之一是设计低成本、高能量密度的正极材料。 [1-3] 与现有的钴基和镍基层状正极材料(如 LiCoO 2 和 LiNi 1-xy Co x Mn y O 2(0 ≤ x+y ≤ 0.5))相比,锰基尖晶石氧化物 LiMn 2 O 4 因成本低、工作电压可接受而引起了广泛关注。[4-6] LiMn 2 O 4 已广泛应用于便携式移动电源,但由于能量密度低(<500 W h kg -1 ),未在电动汽车和 PGESS 中使用。用 Ni 部分替代 Mn,尖晶石 LiMn 2-x Ni x O 4(0< x <1)(LMNO)在接近 4.7 V 处表现出由 Ni 2+ /Ni 4+ 氧化还原对贡献的额外电位平台,将能量密度推高至 580 W h kg -1 。 [7-10] 尽管如此,由于只有尖晶石骨架上 8a 位上的锂离子可以可逆地嵌入/脱出,因此相对较低的容量(<140 mA hg -1 )可以进一步改善。 为了获得更高的容量,一种方法是将电位窗口从 3.0 - 4.8 V 扩展到 2.0 - 4.8 V,因为额外的锂离子可以在 3.0 V 以下嵌入 16c 位。 在此过程中,Mn 4+ 会还原到接近 Mn 3+ 的低价态,从而引起严重的 Jahn-Teller (JT) 畸变和从立方相到四方相(1T)的剧烈相变。 [11,12] 晶格对称性降低导致的晶格体积变化大和各向异性应变大,会在块体中引起裂纹,从而导致电接触丧失和结构降解,最终导致容量衰减。因此,通过抑制JT畸变来抑制立方-四方相变是提高3.0 V以下循环稳定性的关键。长期以来,尖晶石正极的研究主要集中在进一步提高结构稳定性,通过用Li、[6,13]Mg、[14,15]替代Mn或Ni