我们利用锡罗斯岛(希腊基克拉泽斯群岛)出露的俯冲相关岩石的结构和微观结构观测结果,对深俯冲界面的长度尺度和异质性类型提供约束,可能对间歇性震颤和慢滑移有影响。我们选择了三个锡罗斯地区,它们代表了俯冲界面剪切带内不同的海洋原岩和变形条件,包括:(1)海洋地壳向榴辉岩相的顺向俯冲;(2)海洋地壳从榴辉岩经蓝片岩-绿片岩相折返;(3)混合镁铁质地壳和沉积物从榴辉岩经蓝片岩-绿片岩相折返。这三个地方都保留了流变学异质性,反映了俯冲原岩中原始岩性、地球化学和/或结构变化的变质,并以粘性基质内的脆性荚状物和透镜状物的形式出现。微观结构观察表明,基质岩性(蓝片岩和富含石英的变质沉积物)由分布式幂律粘性流变形,并由多个矿物相中的位错蠕变所适应。我们估计整体剪切带粘度范围从~10 18 到 10 20 Pa-s,取决于沉积物与(部分榴辉岩化的)海洋地壳的相对比例。基质内的榴辉岩和粗粒蓝片岩异质性保留了多代扩张剪切断裂
»35,000 m 2 ----»72,200 m 2 ----»10,000 m 2 -----»7,200 m 2 ----中国广东梅州厂»18,000 m 2 ----------------------------------------------------
1 再生疗法中心(CRTD),德累斯顿工业大学,01307 德累斯顿,德国;giovanni.pasquini@tu-dresden.de(GP);Anka.Kempe@tu-dresden.de(AS) 2 神经解剖学和发育生物学研究所(INDB),埃伯哈德卡尔斯大学图宾根,72074 图宾根,德国;virginia.cora@uni-tuebingen.de(VC);Kevin.Achberger@uni-tuebingen.de(KA);lena.antkowiak@uni-tuebingen.de(LA);Stefan.liebau@uni-tuebingen.de(SL) 3 眼科系,尤斯图斯-李比希大学,35392 吉森,德国;brigitte.mueller@augen.med.uni-giessen.de(BM); tobias.wimmer@augen.med.uni-giessen.de(TW);Knut.Stieger@uniklinikum-giessen.de(KS)4 图宾根大学医学遗传学和应用基因组学研究所,72076 图宾根,德国;sabine.fraschka@med.uni-tuebingen.de(SA-KF);Nicolas.Casadei@med.uni-tuebingen.de(NC)5 图宾根 DFG NGS 能力中心,72076 图宾根,德国 6 图宾根大学眼科研究所眼科系,72076 图宾根,德国; marius.ue ffi ng@uni-tuebingen.de 7 Universitäts-Augenklinik Bonn,波恩大学,眼科系,53127 波恩,德国 * 通信地址:volker.busskamp@tu-dresden.de † 这些作者对这项工作做出了同等贡献。
1) 坎顿附近的“蛇形”路堑,一种塑性折叠、弱叶理的大理岩,具有薄而持久的类似折叠的层,主要由微斜长石组成;2) 古弗内尔附近的岩岛路堑,暴露出格伦维尔大理岩中波茨坦砂岩的空腔填充物,一种粗面岩(?)侵入大理岩的杏仁状堤坝,片麻岩和片岩中的复杂角砾岩化,众多剪切带和黄铁矿矿化;3) 和 4) 布拉西角附近的海德“晶石”,将强调次要结构和主要结构之间的关系,并讨论晶石起源的有争议的问题;5) 海尔斯伯勒路堑,暴露出塑性变形的大理岩,其中含有显然来自堤坝的辉长岩块; 6) 石英黑云母 - 长石片麻岩中的 Poplar Hill 混合岩路堑,是该地区 Grenville 最广泛的变质沉积岩类型之一;7) Edwards 路堑,是著名的透辉石、方解石、金云母、钾长石和磷灰石矿物收集地。
微生物对生物素的生物合成研究 (主审员) 论文研究委员会 绪方光一教授 镰田久明教授 岩井和夫教授
摘要 基于概率的经验方法被用作预测与岩体性质相关的不确定性的替代方法。重点是开发概率电子表格来预测岩体分类指标。构建直方图来描述预测岩体性质的最佳分布。开发的模型还有助于预测岩体内部不连续性对岩石强度和岩体分类系统的影响。统计分析确定体积节理数、节理间距、节理频率和岩石强度是最具影响的参数。此外,统计分析显示不同岩体性质之间存在不同程度的相关性。虽然一些属性显示出适合建模的显着相关性,但其他属性与任何相关模型都不太吻合。结果强调需要一种全面的岩体表征方法,考虑体积节理数以外的多种因素。地质复杂性,包括构造活动和风化过程,可能会掩盖直接相关性。这些结果强调了经验建模和详细现场调查对于准确评估喜马拉雅岩体质量和稳定性的重要性。
Barton, N、Lien, R 和 Lunde, J 1974,《隧道支护设计中的岩体工程分类》,《岩石力学》,第 6 卷,第 189-236 页。Bieniawski, ZT 1974,《岩石材料强度估算》,《南非矿业冶金研究所杂志》,第 74 卷,第 8 期,第 312-320 页,https://doi.org/10.1016/0148-9062(74)91782-3 Bieniawski, ZT 1989,《工程岩体分类:采矿、土木和石油工程工程师和地质学家完整手册》,Wiley-Interscience 出版物 - John Wiley & Sons。 Carranza-Torres, C 和 Fairhurst, C 2000,《隧道设计中收敛约束法在满足 Hoek-Brown 破坏准则的岩体中的应用》,《隧道与地下空间技术》,第 15 卷,第 2 期,第 187-213 页。Deere, DU 和 Deere, DW 1988,《岩石质量指标 (RQD) 的实践》,L Kirkaldie (ed),《工程用岩石分类系统》,ASTM STP 984,ASTM International,西康舍霍肯。