研究了相对论重离子碰撞中产生的带电粒子定向流的起源。将三种不同的能量密度分布初始条件Boz ˙ek-Wyskiel,CCNU和Shen-Alzhrani耦合到(3+1)维粘性流体动力学模型CLVisc中,系统地比较了它们对各向异性介质几何形状,压力梯度和径向流发展的影响。通过与RHIC和LHC的实验数据进行比较,我们发现定向流对撞击参数和时空快速度所跨越平面内初始介质剖面的倾斜度提供了独特的约束。在中等快速度内,逆时针倾斜被证明是后向/前向快速度下沿撞击参数(x)方向的压力梯度产生正/负力的关键来源,这导致介质流速的x分量相对于快速度呈现负斜率,最终形成带电粒子定向流的相同特征。
不同(伪)快度(η)下局部流平面之间的方位角关联可以揭示重离子碰撞中初始核物质密度分布的重要细节。对因子分解比(r2)及其导数(F2)的大量实验测量表明存在纵向流平面去相关。然而,非流动效应也会影响该观测量并阻碍对该现象的定量理解。在本文中,为了区分去相关和非流动效应,我们提出了一个新的累积量可观测量T2,它在很大程度上抑制了非流动。用一个简单的蒙特卡洛模型测试了该技术对不同初态场景和非流动效应的敏感性,最后将该方法应用于多相传输模型(AMPT)模拟的√Au+Au 碰撞事件
fi g u r e 4微生物活性在原位24小时孵育和前坐骨长期实验室孵育中。在(a)Mittivakkat冰样品,(b)Langjökull雪样品和(c)Langjökull冰样品中的细菌的活性分数(通过Boncat确定)。显示了均位于原位(即在冰川表面上)的孵育(一式三份)和实验室在2°C的实验室孵育的前静电序列,从-20°C的6个月储存(以单次)为单位。孵育时间(天)表示添加HPG(“预孵育”)和与HPG 24小时(“ HPG结构”)之前的孵育期和24小时的总和。小提琴图的外部形状表示数据的内核密度分布,其中较宽的部分表明数据密度较高。
利用重夸克可观测量来探测相对论重离子碰撞中产生的违背纵向增强不变性的初始能量密度分布。利用改进的朗之万模型和(3+1)维粘性流体动力学模型,我们研究了 RHIC 能量下重介子及其衰变电子的核修正因子(RAA)、定向流(v1)和椭圆流(v2)系数。我们发现,核物质在反应平面的逆时针倾斜会导致在后向(前向)快速度区出现正(负)重味v1,其大小随着重夸克横向动量的增加而增加。不同角度区域之间重味RAA的差异也被提出作为表征介质分布不对称性的补充工具。我们的模型结果与 RHIC 目前可用的数据一致,并提供了可以通过未来测量进行检验的预测。
重夸克是电磁场和高能核碰撞中产生的夸克胶子等离子体 (QGP) 物质初始条件的重要探针。在与 (3+1) 维粘性流体动力学模型耦合的改进的朗之万模型中,我们探索了重介子及其衰变轻子的定向流系数 (v 1 ) 的起源,以及它在相反电荷之间的分裂 (∆v 1)。我们发现,虽然重夸克 v 1 的快速度依赖性主要由 RHIC 能量下 QGP 相对于纵向的倾斜能量密度分布驱动,但它主要受 LHC 能量下的电磁场影响。∆v 1 可作为电磁场时空演化分布的一种新探针。我们对 D 介子及其衰变电子的研究结果与 RHIC 和 LHC 上现有的数据一致,而且我们对重味衰变μ子的预测可以通过未来的测量进一步检验。
等效磁网络(EMN)方法似乎是电动机中磁场的一种更有效的分析方法,比等效磁路方法(EMC)[11]和比有限元方法(FEM)相比,相结合了更高的计算精度和更快的计算速度。W. Shi等。研究了具有V形磁铁结构的PMSM的EMN,该结构可以准确计算磁场分布并模拟电动机的抗磁力化能力[12]。J. Zhang等。 提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。 尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。 然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。 H. Kwon等。 研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。 G. Liu等。 研究了具有单层V形磁体结构的PMSM的动态EMN模型。 其正确性通过FEM和实验验证[15]。 但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。J. Zhang等。提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。H. Kwon等。研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。G. Liu等。研究了具有单层V形磁体结构的PMSM的动态EMN模型。其正确性通过FEM和实验验证[15]。但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。在[16]中,动态EMN模型用于表面安装的PMSM的多目标优化,这对电动机的快速设计有益。
摘要:在本文中,我们探讨了生成机器学习模型作为计算昂贵的Monte Carlo(MC)模拟的替代品的潜力,该模拟(MC)模拟了大型强子撞机(LHC)实验通常使用的。我们的目标是开发一个能够有效地模拟特定粒子可观察物的检测器响应的生成模型,重点关注同一事件中不同颗粒的检测器响应之间的相关性并适应不对称的检测器响应。我们基于掩盖自回归流链的条件归一化流量模型(CNF),有效地结合了条件变量和高维密度分布。我们使用在LHC上对偶发事件的Higgs玻色子腐烂样品进行了模拟样本评估CNF模型的性能。我们使用涂抹技术创建重建级别的可观察力。我们表明,有条件地归一化的流可以准确地对复杂的检测器响应及其相关性进行建模。此方法可以潜在地减少与生成大量模拟事件相关的计算负担,同时确保生成的事件满足数据分析的要求。我们在https://github.com/allixu/normalizing_flow_flow_for_detector_response
摘要。Kepahiang Regency位于岩浆弧和大陆板的边界区域,带有海洋板,以Solfatara,Fumarole和Alteration Rocks的形式在表面上出现了一些地热甜度,因此它成为地热能的前景。进行的研究的目的是找出围绕Kepahiang的地热储层的分布。这项研究是通过重力方法进行的,因此可以对地下密度分布进行描述。本研究使用全球重力模型加上(GGMPLUS)数据,分辨率为220米,即自由空气异常(FAA)和地形。基于数据处理的结果,获得了一个完整的布格异常(ABL),该异常是区域异常和残留异常的组合。通过使用移动平均方法将异常分开。异常图提供了三种分布模式的信息,即高,中和低异常。残留异常是使用2D反转方法建模的多达七个切片,这些切片怀疑地热储层。结果显示,据称该面积在46.7-50.9 mgal之间,据称是一个地热储层,密度值<2.5 g/cm 3在不同的深度下,每个切片的深度不同。在某些区域中,地热制造的不可分性,这些区域的储存量是由于存在密度为2.6-2.7 g/cm 3的密度所致。摘要。进行的研究的目的是了解Kepahiang周围地热储层的分布。Kepahiang Regency位于岩浆弧的边界区域和带有海洋板的大陆板的边界区域,导致以Solfatara,Fumarole,Fumarole和变化岩的形式出现在表面上的几种地热表现,因此它成为地热能的前景。这项研究是使用重力方法进行的,因此可以产生地下密度分布的图片。本研究使用全球重力模型加(GGMPLUS)数据,分辨率为220米,即自由空气异常(FAA)和地形。基于数据处理的结果,获得了完整的布格异常(CBA),这是区域异常和残留异常的组合。通过使用移动平均方法将异常分开。异常图提供了三种分布模式的信息,即高,中和低异常。残留异常是使用2D反转方法对七个切片进行建模的,该切片怀疑具有地热储层。结果表明,怀疑CBA值在46.7-50.9 mgal之间的区域被怀疑具有密度值<2.5 g/cm 3的地热储层在每个切片的不同深度下。在某些地区没有地下储层的地热性别兴趣是由于存在密度为2.6-2.7 g/cm 3的宿主岩石所致。
使用 Thorpe 排序和尺度分析对 2017 年春季收集的一些高分辨率 CTD 数据进行了分析,包括常用的“Thorpe 尺度”方法和较少使用的方法,该方法基于直接估计“可用翻转势能”(AOPE):混合“湍流斑块”中原始密度剖面与排序密度剖面的势能之间的差异。剖面仪的速度各不相同,因此空间(垂直)采样不均匀。开发并描述了一种方法,将 Thorpe 缩放和 AOPE 方法应用于这种不均匀采样的数据。 AOPE 方法似乎对“背景”浮力频率 N 的估计(约束性较差)不太敏感。虽然这些方法通常用于首先估计湍流动能的耗散率 « K,但真正的目标是估计密度扩散率 K r,从而估计混合对密度分布的净改变。两个易于测量的无量纲参数被提出作为混合斑块“年龄”或“状态”的可能指标,这可能有助于解决总湍流能量和耗散如何在动能和势能成分之间分配的问题,以及测量的 AOPE 中有多少最终会改变背景分层。下面提供了一个关于其如何工作的推测性示例。