1斯坦福材料与能源科学研究所,SLAC国家加速器实验室,Menlo Park,CA 94025,美国2美国2号物理系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国3美国3号应用物理系,斯坦福大学,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国加利福尼亚州94305,美国40年5月5日,美国40号。固体化学物理研究所,01187德国,德国6卡夫利研究所,位于康奈尔大学康奈尔大学,康奈尔大学,康奈尔大学,纽约,纽约,14850,美国 *使用外延菌株以薄膜形式以薄膜形式的环境压力超导性。最近,在压缩的双层镍薄膜中已经观察到超导性的迹象,其起源温度超过40 K,尽管具有宽阔和两步状的过渡。在这里,我们报告了压缩性的LA 2 PRNI 2 O 7薄膜中的内在超导性和正常状态转运性能,这些薄膜通过等值的PR替代,生长优化和精确的Ozone退火来实现。超导的开始发生在48 K以上,零电阻达到30 K以上,而在1.4 K时的临界电流密度比以前的报告大100倍。正常状态电阻率表现出二次温度依赖性,指示了费米液体行为,而其他现象学相似性与过度库酸酯中的运输相似,这表明其新兴特性的相似之处。
本文对纯电动汽车 (BEV) 推进系统的电动机驱动器进行了分析。本文对电动汽车 (EV) 应用中常用的交流和直流电动机驱动器进行了全面的回顾和数学分析。各种类型的电动机驱动器已用于 EV 推进,其中,永磁同步电动机 (PMSM) 驱动器是最佳选择。PMSM 驱动器具有卓越的性能和众多优势,包括结构坚固、效率高、尺寸紧凑、维护成本低和扭矩波动最小。与其他电机相比,这些特性使其成为更适合 EV 推进的选择。本研究调查了 PMSM 驱动器与 EV 推进系统中使用的其他竞争性电动机驱动器(即无刷直流电机 (BLDCM)、感应电机 (IM) 和开关磁阻电机 (SRM))相比的性能。评估侧重于电动机的关键标准——输出功率和扭矩密度,这对于在 EV 推进系统中的有效应用至关重要。本文介绍了两种著名 PM 电机系列(PMSM 和 BLDCM)之间的新型数学和分析关系。这两种电机在功率和扭矩输出方面都极具竞争力。数学分析和图形绘图模拟结果表明,PMSM 驱动器在三种电机驱动器中提供最高的功率和扭矩密度。具体而言,在功率因数、尺寸、额定值和效率等操作参数相同的情况下,PMSM 驱动器的功率和扭矩密度比 BLDCM 驱动器高 29.90%,比 SRM 驱动器高 88.68%,比 IM 驱动器高出惊人的 200%。这些发现凸显了 PMSM 驱动器的显著优势,使其成为电动汽车推进系统的上佳选择。
AGL 地面以上高度 (m) A 校准常数 (-) B 校准常数 (-) B o 浮力比 (-) C 浓度 (ppm 或 μg/m 3 ) C o 示踪气体源强度 (ppm 或 μg/m 3 ) C max 最大测量浓度 (ppm 或 μg/m 3 ) C s 校准气体浓度 (ppm 或 μg/m 3 ) 全量程采样时间的浓度估计,t s (μg/m 3 ) C k 风洞采样时间的浓度估计,t k (μg/m 3 ) Δ 差分算子 (-) Δθ 位温差 (K) δ 边界层高度 (m) d 烟囱直径 (m) E 电压输出 (伏) Fr 弗劳德数 (-) g 重力加速度 (m/s 2 ) h 烟囱高度高于屋顶水平 (m) H 烟囱高于当地坡度的高度 (m) H t 地形高度 (m) H b 建筑物高度 (m) I s 气相色谱仪对校准气体的响应 (伏特) I bg 气相色谱仪对背景的响应 (伏特) k 冯·卡门常数 (-) L 长度尺度 (m) λ 密度比 (-) M o 动量比 (-) n 校准常数,幂律指数 (-) v 运动粘度 (m 2 /s) m 排放率 (g/s) ρ a 环境空气密度 (kg/m 3 ) ρ s 烟囱气体流出物密度 (kg/m 3 ) R 速度比 (-) R i 理查森数 (-) Re b 建筑物雷诺数 (-) Re k 粗糙度雷诺数 (-) Re s 流出物雷诺数 (-)
经济发展与可持续性[1 E 4]。可再生能源的效率和技术使我们能够提供丰富,可靠,清洁,安全且独立于燃油价格的低碳能量。作为一种环保和可疑的能源,氢是化石燃料的绝佳替代品。汽油或其他化石燃料等燃料的能量密度比氢之类的燃料低七倍。氢的能量密度增加使其成为更理想的燃料。氢的运输和存储所需的安全性和特殊表达对氢的应用和广泛使用产生了重大影响。目前,运输主要是由石油燃料燃料燃料的[5 E 7]。石油燃料正变得越来越昂贵且难以获得。氢可以完美地填充这个利基市场。要将这种燃料用作运输燃料,但是,必须首先开发高密度存储通道[8 E 10]。氢可以以多种方式存储,包括具有高容量的高重储罐(350 E 700 bar)。尽管有压力,但与常规能源相比仍然很低。为了使储罐保持高压条件,应通过固体和轻质材料来构建它们。未来车辆的氢燃料储存策略是原子氢的低温液化。由于环境热量的转移,氢的除湿氢是一个严重的chal子。材料的一般结构能由其特异性重力确定。内部存储压力增加并导致燃料损失的主要原因,例如煮沸。由于氢可以通过解离在金属固体(例如LI,Mg或Al)中吸收,因此,化学储存固体化合物比液化化合物更安全,更有效。在温度和压力的环境条件下,可以使用这种方法在大规模上恢复氢。高
抽象的高度敏感的原位杂交程序(RNASCOPE)用于量化两种歌曲控制核(HVC和基底神经节的X区域X)中三种多巴胺受体(DRD1,DRD2和DRD3)的表达,已知这些核的表达已知,这些核的表达是众所周知,这些核的表达是接受多巴胺剂输入的男性和女性的灰色和PeriaqueDuctal and Peria cag and Peria cag and pag and pag and pag and pag)。两性都用睾丸激素治疗,以确保他们会积极唱歌。我们还确定了表达这些受体的细胞的兴奋性与抑制表型,以及它们在一段时间产生歌曲后的激活。在每个大脑区域中都鉴定了三种受体类型,但X区域drd3除外。表达每个受体的细胞密度随受到受体类型和脑面积的函数而变化。令人惊讶的是,很少发现性别差异;他们似乎无法解释睾丸激素引起的歌曲的性别差异。总体而言,PAG中DRD阳性细胞的密度比两个歌曲控制核低得多。在HVC中,大多数表达三种受体亚型的细胞均为vglut2阳性,而与vglut2的共定位发生在X区域的几个细胞中,并且PAG中的细胞中等比例。表达多巴胺受体的抑制细胞的数量受到限制。X区域中的大多数多巴胺感染细胞都没有表达兴奋性或抑制标记。最后,在表达三种多巴胺受体亚型中每一个的细胞中观察到了通过EGR1表达测量的唱歌过程中的细胞激活,除了PAG中的DRD3。
抽象背景由于过去十年的技术进步,电动汽车市场已迅速扩展,关键的推动力是开发具有更高能量密度,更快充电速度和寿命更长的高性能电池。建筑设备行业在电气化方面面临着独特的挑战,包括高功率需求,延长的运营时间以及最少的停机时间。为了应对这些挑战,沃尔沃建筑设备正在调查电池交换系统解决方案,该解决方案允许快速换台,减少停机时间和与机器的脱钩寿命。这项研究的目的是设计用于电池交换系统的电池组,同时回答以下研究问题:RQ1:在设计用于建筑设备的电池组时,电池模块,机架和辅助系统的哪种配置可实现最高的能量密度?rq2:设计电池模块,机架和辅助系统以实现用于施工设备的电池组的最高能量密度时,应考虑哪些因素?方法这个项目遵循Ulrich等人的有限版本。的(2019)产品开发过程,重点介绍了电池交换系统的概念开发和系统级设计。采用了一种归纳研究方法,从访谈,文献,文件和会议中收集了定性和定量数据,以对项目挑战产生整体理解。使用诸如前向和向后滚雪球之类的技术,使用多个数据库中的相关关键字进行了结构化文献审查。数据分析方法(包括对话分析)被用来构建和分析收集的数据,确保通过三角测量确保有效性和可靠性,并与沃尔沃的专家进行交叉引用。实证研究是通过基准测试和案例研究进行的,从内部文档和与产品开发人员进行沟通的规格和定性见解提供了定量数据。这些发现构成了迭代概念生成过程,强调了在早期阶段探索各种可能性的重要性。结论设计过程涉及评估先前的电池组解决方案,这些解决方案在预定义的约束中工作,例如使用特定的外壳,内部开发的电池模块,辅助组件,同时满足一组利益相关者的需求。由于电池组有新的内部布局,因此也开发了一些支持电池模块的辅助组件和一个支撑电池模块的机架。这导致了一个概念电池组,从理论上讲,其能量密度比以前的电池组解决方案高30%。提出的解决方案使沃尔沃建筑设备能够通过在给定约束内最大化存储容量来提供更长的运行时的机器和提高生产率。关键字:电池交换,电池组,产品开发,概念生成,建筑设备,设计,电池模块布局。