1.引言 A.背景 对Shor算法[1]的评估非常重要。Shor算法是一种解决整数分解和离散对数问题的方法,这些问题在经典计算机中需要亚指数时间[2]。这些问题是当前公钥密码体制安全性的基本问题,包括RSA密码体制[3]和椭圆曲线密码体制[4],[5]。目前,量子计算机的规模对于破解这两个公钥密码体制[6],[7],[8],[9],[10],[11]来说是相当小的。然而,量子计算机的规模正在增加[12],估计Shor算法破解这两个公钥密码体制的时间非常重要。为了估计Shor算法破解当前公钥密码体制的时间,对Shor算法的精确评估非常重要。本文讨论单台量子计算机上的 Shor 算法。如果有两台以上的计算机,最近提出的分布式 Shor 算法 [13] 将降低计算成本。我们的结果将能够与该结果相结合,本文考虑单台量子计算机。本文重点讨论 Shor 算法对 n 位合数 N 进行因式分解。
传统公钥密码体制 (PKC),包括 RSA [ 27 ]、ECDSA [ 6 ] 和 Diffie-Hellman [ 11 ],是密码安全密钥交换机制和数字签名方案的基础。然而,预计此类密码方案将在未来几十年内被量子计算机破解 [ 23 ]。量子计算机带来的威胁要求定义和设计具有与 PKC 相同功能的替代密码体制,在确保免受量子计算机攻击的同时,保持对传统计算机攻击的安全性。后量子密码体制 (PQC) 旨在开发既能抵御传统攻击又能抵御新型量子攻击模型的密码体制,可在传统架构计算机和现有设备上实现,并可集成到当前使用的网络和通信协议中 [7]。
随着脑机接口技术的快速发展,脑电信号作为一种新的生物特征识别特征近年来受到广泛关注,脑机接口的安全性以及生物特征认证长期以来的不安全性有了新的解决方案。本文对脑电信号生物特征识别进行了分析,并涉及到认证过程中的最新研究,主要介绍了基于脑电信号的认证方法,并首次系统地介绍了基于脑电信号的生物特征密码体制用于认证。在密码学中,密钥是密码体制中认证的核心基础,密码技术可以有效提高生物特征认证的安全性,保护生物特征。基于脑电信号的生物特征密码体制的可撤销性是传统生物特征认证所不具备的优势。最后提出了基于脑电信号的身份认证技术现存的问题和未来的发展方向,为相关研究提供参考。
后量子密码体制通常是量子安全方案或整数分解问题。虽然目前还不清楚大规模量子计算何时可行,但预测量子计算并设计新的能够抵御量子攻击的公钥密码体制还是很重要的。因此,目前正在进行大量研究以开发新的后量子安全方案,美国国家标准与技术研究所 ( https://www.nist.gov/ ) 已经启动了后量子密码标准化进程。正因为如此,人们对通过将 Fiat-Shamir 变换 [9] 应用于零知识识别方案来构建签名方案重新产生了兴趣。特别是,我们对后量子密码体制感兴趣,它的安全性依赖于某些 NP-Hard 问题的量子难度 [2]。其中一个问题是置换核问题:即找到已知向量的置换,使得结果向量位于给定矩阵的核中。这是一个经典的 NP-Hard 组合问题,只需要一些简单的操作,例如基本线性代数和对向量元素进行排列。很长一段时间以来,没有发现针对 PKP 的新攻击,这使得我们可以自信地估计该问题的具体难度。
摘要 — 量子置换垫或 QPP 最早由 Kuang 和 Bettenburg 于 2020 年提出 [15]。QPP 是一种由多个 n 量子比特量子置换门组成的通用量子算法。作为一种量子算法,QPP 既可以在量子计算系统中实现为对 n 量子比特状态进行操作以进行转换的量子电路,也可以在由 n 位置换矩阵垫表示的经典计算系统中实现。QPP 具有两个独特的特点:巨大的香农信息熵和置换矩阵之间的非交换性或广义不确定性原理。置换变换是输入信息空间和输出密文空间之间的双射映射。这意味着,由于不确定性关系,QPP 具有可重用的香农完全保密性。QPP 是希尔伯特空间上一次性垫或 OTP 的推广,而 OTP 是伽罗瓦域上 QPP 的简化。基于此,本文研究了一种 AES 变体,将 AES 的 ShiftRows 和 MixColumns 与 QPP 结合起来,形成一种量子安全轻量级密码体制,称为 AES-QPP。AES-QPP 将 SubBytes 和 AddRoundKey 与 16 个 8 位置换矩阵的相同 QPP 结合起来,本质上 SubBytes 是一个特殊的 8 位置换矩阵,AddRoundKey 是从 XOR 操作中选择的 16 个 8 位置换矩阵。通过随机选择 16 个带有密钥材料的置换矩阵,AES-QPP 可以容纳总共 26,944 位香农熵。它不仅提高了对差分和线性攻击的安全性,而且还将轮数大大减少到 5 轮。AES-QPP 可能是量子安全轻量级密码体制的良好候选者。
需要量子操作或涉及量子态的函数称为量子函数。量子 OWF 的概念最早在 [4,12] 中提出。Nikolopoulos [21] 提出了一个量子陷门函数,通过单量子比特旋转实现经典到量子的映射。该函数将任意 n 位字符串映射到一个量子比特。虽然该设计可以用来构造量子公钥密码体制,但显然它不符合量子单向函数的标准:设任意两个输入 x 1 和 x 2 对应的输出分别为 | φ 1 ⟩ 和 | φ 2 ⟩ ,通过交换检验比较 | φ 1 ⟩ 和 | φ 2 ⟩ ,不可能得到小于 n − c 的错误概率。受BB84量子密钥分发协议[2]的启发,我们引入一种新的经典到量子单向函数,将经典信息映射到量子态,并表明所提出的函数满足量子单向函数的性质,从而证明了量子单向函数的存在。
摘要:得益于最近硬件的进步,量子计算是一个快速发展的研究领域。量子计算机的量子力学特性使它们能够比传统计算机更快地解决某些问题。其中一个问题是非结构化搜索问题,使用众所周知的 Grover 算法,量子机可以比目前可用的最佳效率经典算法(即线性搜索)更高效地解决该问题。量子 p 计算为此类问题提供了二次加速,O(N),而传统算法提供的线性效率为 O(N),其中 N 是搜索空间。另一个非常重要的应用是多项式时间量子算法,称为 Shor 算法,用于分解整数和计算离散对数。Shors 算法是第一个实现比传统算法指数加速的量子算法,应用于量子力学领域以外的问题,具有明显的应用价值。具体来说,Shors 算法可用于破解基于对两个大小相似的素数乘积进行因式分解的难度的 RSA 密码体制,以及基于离散对数问题 (DLP) 的密码体制,例如 Diffie-Hellman 密钥协商协议和数字签名算法。Shors 因式分解算法执行的最昂贵的操作是模幂运算。现代经典计算机可以在一秒内对数千位数字执行模幂运算。这两个事实乍一看似乎表明使用 Shors 算法对一千位数进行因式分解只需要几秒钟,但不幸的是(或许幸运的是),事实并非如此。Shors 算法中的模幂运算是在指数叠加上执行的,这意味着需要量子计算机,而量子硬件的噪声预计会比经典硬件高出几个数量级。这种噪声需要使用纠错,这会带来开销,最终使得在量子计算机上执行可靠算术的成本比在传统计算机上高出几个数量级。尽管 Shors 算法在多项式时间内运行,但渐近符号隐藏的常数因子相当大。必须通过各个层面的大量优化来克服这些常数因子,才能使算法实用。目前的量子计算机还远远不能执行与密码相关的问题规模的 Shors 算法。本文提出了一种实现 Shors 量子因式分解算法的方法和实验。实现是使用 Python 和量子计算机模拟完成的
量子密码分析始于 Shor [40] 的开创性工作,他证明了 RSA 和 Diffie-Hellman 密码体制可以被量子计算机破解。Simon 算法 [41] 的工作原理非常相似,它可以在 ( { 0 , 1 } n , ⊕ ) 中找到一个隐藏周期,但它最近才开始应用于密码分析。2010 年,Kuwakado 和 Morii [29] 展示了如果允许对手进行叠加查询,如何在量子多项式时间内区分三轮 Feistel 网络和随机排列。后来,人们在这种情况下获得了更多结果 [30, 24, 31]。然而,尽管令人印象深刻,但这些破解需要叠加查询模型,在该模型中,攻击者可以将原语作为量子预言机进行访问;例如,对具有未知密钥的密码进行量子加密查询。在本文中,我们首次在标准查询模型中应用了 Simon 算法,表明上述中断可能会在该模型中产生影响。这也是量子隐藏周期算法在仅使用经典查询的对称密码学中的首次应用。我们的核心结果之一是,在解决具有隐藏结构的碰撞搜索问题时,我们可以用多 (n) 个量子比特替换指数大小的内存。即使时间加速仍然是二次的,这也为量子对手带来了之前意想不到的优势。