摘要。本文改进了 Shor 攻击二元椭圆曲线所需的量子电路。我们提出了两种类型的量子点加法,同时考虑了量子比特数和电路深度。总之,我们提出了一种就地点加法,改进了 Banegas 等人在 CHES'21 中的工作,根据变体的不同,将量子比特数 - 深度乘积减少了 73% - 81% 以上。此外,我们通过使用额外的量子比特开发了一种非就地点加法。该方法实现了最低的电路深度,并将量子比特数 - 量子深度乘积提高了 92% 以上(单个步骤)。据我们所知,我们的工作在电路深度和量子比特数 - 深度乘积方面比所有以前的工作(包括 Banegas 等人的 CHES'21 论文、Putranto 等人的 IEEE Access'22 论文以及 Taguchi 和 Takayasu 的 CT-RSA'23 论文)都有所改进。结合实现,我们讨论了二元椭圆曲线密码的后量子安全性。在美国政府的 NIST 提出的 MAXDEPTH 度量下,我们工作中深度最大的量子电路为 2 24 ,明显低于 MAXDEPTH 极限 2 40 。对于门数 - 全深度乘积(一种估计量子攻击成本的度量,由 NIST 提出),我们工作中度为 571 的曲线的最高复杂度为 2 60(在经典安全性方面与 AES-256 相当),明显低于后量子安全 1 级阈值(2 156 量级)。
存在多种构造伪随机排列和伪随机函数的方法。随机 Feistel 密码也称为 Luby-Rackoff 分组密码,是用于构造分组密码的对称结构。Feistel 网络的好处是相同的结构可用于加密和解密,并且两者都包括以固定次数迭代运行一个称为“轮函数”的函数。从随机函数或随机排列构建伪随机排列研究最多的方法是 r 轮 Feistel 构造。Feistel 构造从实用角度来看很重要,因为它被用于开发许多分组密码,如 DES [ 2 ]、3DES [ 2 ] 和 Simon [ 7 ]。我们研究了对 Feistel 方案的一般攻击,其中我们假设内部轮函数 f 1 , ... , fr 是随机选择的。 Feistel 方案的明文消息用 [ L, R ] 表示,代表左和右,经过 r 轮后的密文消息用 [ S, T ] 表示。Feistel 方案的第一轮以 [ L, R ] 作为输入,输出 [ R, L ⊕ f ( R )],其中 fa 是 n 位到 n 位的秘密函数。Benes 方案是两个称为“蝴蝶”方案的组合。它允许从 n 位到 n 位的随机函数构造一个 2 n 位到 2 n 位的伪随机函数。对于许多密码原语(例如散列和伪随机函数),将输出长度加倍是有用的,即使加倍变换不可逆。Benes 方案的明文消息用 [ L, R ] 表示,代表左和右,密文消息用 [ S, T ] 表示。
摘要:自古以来,密码学就被用于保护存储或传输数据/信息的机密性。因此,密码学研究也从经典的凯撒密码发展到基于模运算的现代密码系统,再到基于量子计算的当代密码系统。量子计算的出现对基于模运算的现代密码系统构成了重大威胁,因为构成模运算密码强度的计算难题也可以在多项式时间内解决。这种威胁引发了后量子密码学研究,旨在设计和开发能够抵御量子计算攻击的后量子算法。本文概述了后量子密码学中已经探索的各种研究方向,特别是已经探索的各种基于代码的密码学研究维度。从代码的角度探讨基于代码的密码学研究中尚未探索的一些潜在研究方向是本文的一项重要贡献。
摘要:本文提出了战略步骤,组织可以采取使未来的安全体系结构免受量子威胁,以防止量子威胁,以确保量化后时代的数据完整性和机密性。量子计算的进步太快是一个非常威胁,经典的加密系统将处于危险之中。因此,我们需要在量子安全加密中修改加密方法。在本文中,我们专注于揭示面临量子攻击的现有公开密码系统的脆弱性,以及量词后加密(PQC)算法的方向,以确保基础架构的基础基础架构。本文讨论了由美国国家标准技术研究所(NIST)领导的持续努力,以标准化密码系统。它概述了几种抗量子的加密技术:基于晶格,基于哈希的示例和基于代码的示例。此外,该论文还概述了将量子安全的加密解决方案实施到当前的网络安全框架中的困难,尤其是在金融,医疗保健和关键的基础设施行业中。关键字:Quantum加密后(PQC),量子安全加密,Shor's算法,量子密钥分布(QKD)。1。引言即使量子计算对多个行业产生深远的影响,其对网络安全的影响也是戏剧性的。因此,在量子时代,RSA,ECC和DH密钥交换等流行的加密协议将过时。此外,它还研究了企业和政府为Quantum做好准备的努力和实践策略。2。经典加密系统依赖的安全通信和数据保护的基础是基于数学问题,例如整数分解和离散对数,量子计算机可以使用Shor和Grover的算法更快地求解成倍的求解。随着量子威胁的出现,全球开发和实施量子后加密术(PQC)的计划加速了,因为PQC是一种新的加密算法,可抵抗量子攻击。NIST(例如),欧洲电信标准学院(ETSI)等公司和行业一直在努力标准化抗量子的加密解决方案。 但是,基于经典和量子安全的密钥对的密码学具有巨大的经典技术和操作挑战,包括关键管理,计算效率以及与现有系统的集成。 在本文中分析了经典加密的脆弱性,PQC算法的当前水平以及在不同工业领域中部署PQC的障碍。 这项研究是关于如何解决这些问题以有助于开发弹性网络安全框架以承受量子计算的变革性影响。 随着量子计算的快速发展,网络安全挑战的概述,网络安全正在争先恐后地避免可能损害现代加密算法的新问题。 传统的加密系统可能会通过量子算法使其不安全(这可以更能解决这些问题NIST(例如),欧洲电信标准学院(ETSI)等公司和行业一直在努力标准化抗量子的加密解决方案。但是,基于经典和量子安全的密钥对的密码学具有巨大的经典技术和操作挑战,包括关键管理,计算效率以及与现有系统的集成。在本文中分析了经典加密的脆弱性,PQC算法的当前水平以及在不同工业领域中部署PQC的障碍。这项研究是关于如何解决这些问题以有助于开发弹性网络安全框架以承受量子计算的变革性影响。随着量子计算的快速发展,网络安全挑战的概述,网络安全正在争先恐后地避免可能损害现代加密算法的新问题。传统的加密系统可能会通过量子算法使其不安全(这可以更能解决这些问题
序言是这些讲座中涵盖的加密协议的一个激励示例,以荷兰的传统为“ Sinterklaaslootjes trekken”,国际上被称为“秘密圣诞老人”,其中一群人匿名交换了小礼物,通常伴随着诗歌,伴随着相当多的押韵couplets long。许多网站可用来帮助人们通过互联网进行此类图纸;参见,例如,lootjestrekken.nl和elfster.com上的“秘密圣诞老人”服务。有趣的问题是如何安全地执行此操作!也就是说,不信任网站或程序提供此服务,但保证(a)确实执行了随机绘图,对应于没有固定点的随机置换,并且(b)使每个参与者什么也没学,除了他或她是秘密的圣诞老人。这种隐私保护密码协议的更严重的应用正在许多地方出现。例如,在过去的二十年中,已经进行了许多使用高级密码学的电子选举。其他应用程序涉及使用匿名现金,匿名凭证,团体签名,安全拍卖等,一直到(安全)多派对计算。为此,我们研究了超越我们喜欢称为加密1.0的加密技术。基本上,加密1.0涉及通信,存储和检索过程中数据的加密和认证。Commen目标是防止恶意局外人,例如攻击存储或通信媒体。整个治疗将在各个阶段进行入门却精确。众所周知的加密1.0原始词是对称的(se-cret键),例如流密码,块密码和消息身份验证代码;不对称(公钥)原始词,例如公钥加密,数字签名和密钥交换协议;而且,无钥匙的原始词,例如加密哈希功能。另一方面,Crypto 2.0还旨在保护恶意内部人士,也就是针对其他人正在运行的协议的攻击。因此,加密2.0涉及使用加密数据,部分信息发布数据以及隐藏数据所有者的身份或与它们的任何链接的计算。众所周知的加密2.0原始素是同态加密,秘密共享,遗忘转移,盲目签名,零知识证明和多方计算,在这些讲义中,这些都将在一定程度上对其进行处理。假定对基本密码学的熟悉。我们专注于加密协议的不对称技术,还考虑了各种构造的安全证明。零知识证明的主题起着核心作用。尤其是,详细将σ提议作为所谓的模拟范式的主要示例,该模拟范式构成了许多现代密码学的基础。这些讲义的第一个和主要版本是在2003年12月至2004年3月的时期编写的。多年来,所有的学生和读者都直接和间接地提供了他们的反馈,这最终帮助了本文的第一个完整版本。浆果Schoenmakers
应用密码学:Bruce Schneier在C中的协议,算法和源代码介绍了现代密码学的全面概述。本书演示了程序员如何应用加密技术来保护计算机数据免受未经授权的访问。它提供了各种算法的详细描述,在软件中实施它们的实用建议,以及如何使用它们来解决安全问题的示例。此更新版本包括新内容,例如其他算法,协议和源代码,同时还包含了上一版中的更正和更新。这本书因其权限和可访问性而受到赞扬,这是寻求建立安全软件和系统的程序员和安全专业人员的宝贵资源。Applied Cryptography是一本备受推崇的书籍,可深入了解加密技术,使其成为需要掌握数字签名等能力的开发人员的重要资源。本书提供了一般类别的加密协议和特定技术的全面概述,包括现实世界中的内部运作方式,例如数据加密标准和RSA public-key密钥密码系统。凭借有关加密实施的实际方面的广泛建议,例如生成真正的随机数并确保钥匙安全,该高级版被称为其领域最有权威的作品之一。该出版物已广泛地成为其领域领域的领先权威。这本书提供了对密码学在维持计算机数据机密性方面的应用程序的深入探索。它涵盖了许多加密算法,提供了将它们实施到软件中的动手指导,并证明了它们解决安全问题的潜力。文本旨在教育程序员创建应用程序,网络和存储系统,以如何将安全功能集成到其设计中。作者的新介绍伴随着这一增强版,这使其成为专门从事计算机和网络安全的人的宝贵纪念品。
2025年3月18日事件描述:网络安全是一个越来越重要的话题,这是由于增强欧洲战略自治的需求以及阻止越来越复杂且频繁的网络攻击的需求。这些挑战是由于技术的快速发展和当前地缘政治格局的复杂性的推动。一种新兴解决方案是量词后密码学,这是一种旨在保护数据抵抗量子计算机的巨大计算能力的技术。与传统的加密方法(量子计算机很容易违反)不同,Quantum加密术提供了高级安全措施,以准备以这些超强的机器为主导的未来。此事件将重点关注网络安全的未来,并额外强调量子后加密术。该活动旨在将研究人员和创新者汇集在一起,以讨论网络安全和量词后技术领域的可能协作。参与者将有机会提出他们的项目想法。这是与网络安全研究和创新的最前沿,塑造安全数字环境的未来,并参与欧盟努力保持领先于量子革命的努力的独特机会。临时议程:10:00 - 10:05简介和欢迎10:05-10:20关于民事安全的REA见解:网络和量子:由REA的代表在民事安全领域的代表,重点是网络安全性和Quantum后加密术。该会议将概述这些领域的新兴趋势和关键主题。11:50关闭备注的见解和最佳实践,用于准备提案和技巧,以使研究与Horizon Europe的战略目标保持一致。10:20 - 11:50推销课程:将展示与Quantum加密和网络安全有关的创新思想和项目建议,并有机会建立潜在的合作伙伴关系。
近距离超越静态MFA和大多数无密码的身份验证解决方案,整合生物识别技术,接近性验证,相互信任和持久性,可以提供连续的安全性,而不会破坏用户工作流量。
摘要 - 加密和解密的串联可以解释为嘈杂的通信通道上的数据传输。在这项工作中,我们使用有限的区块长度方法(正常近似和随机编码联合绑定)以及渐近学表明,可以在不损害该方案的安全性的情况下降低量化后量化后的量化后量子安全键封装机制(KEM)Kyber的密钥和密钥大小。我们表明,在渐近方案中,有可能将密文和秘密密钥的大小减少25%,以使参数集kyber1024,同时将比特率保持在原始方案中建议的1。对于用于共享256位AES键的单个Kyber加密块,我们还表明,Kyber1024和Kyber512的密码下文大小的减小分别为39%和33%。
3通用量子计算机的概念是经典通用计算机一词的量子类比。非常粗略:在通用量子上,计算机可以运行任何量子算法。量子计算机的可伸缩性意味着其计算范围的较小增加(例如,输入的扩展)将不需要大量要求,并且对可伸缩量子计算机的输入长度将逐渐扩展。可靠(容错)量子计算机应以足够的精度去除任何长量子计算的错误。4当代通用量子计算机被称为NISQ-嘈杂的中间量表量子(计算机),即中间尺度的拳头量子计算机。可能是构建隐性相关量子计算机的最大问题是难以确保足够可靠的降噪。根据一些估计,需要一千个物理量子[23],[24]才能实现一个可靠的工作逻辑量子。逻辑量子位是位的量子类比。量子算法可与逻辑Qubits一起使用。物理量子位是一个量子系统,具有两个基本状态的可控制的一般叠加。逻辑Qubits是能够在可靠的量子计算中代表量子算法中量子位的物理量子系统的系统。