有机太阳能电池受益于非富勒烯受体(NFA),这是由于其高吸收系数,可调的边界能量水平和光学间隙及其相对较高的发光量子量相比,与富勒烯相比。这些优点导致在供体/NFA异质结处的低或可忽略不计的电荷产量高产量,而单个连接设备的官能功率超过19%。以超过20%的高度推动此值需要增加开路电压,目前仍远低于热力学极限。这只能通过减少非辐射重组,从而增加光活动层的电致发光量子效率。在这里,总结了对非辐射衰减的起源以及相关电压损耗的准确定量的理解。强调了抑制这些损失的有希望的策略,重点是新的材料设计,供体 - 受体组合的优化和混合形态。本评论旨在指导研究人员寻求未来的太阳能收获供体 - 受体混合物,该供体的混合物结合了较高的激子分离产量和高辐射性的免费载体重组和低电压损耗的高收益,从而缩小了与内部有机和perovskite photovskite PhotoverSkite Photovalsics的效果差异。
摘要:半导体纳米晶须,特别是基于零维 (0D) C 70 富勒烯的纳米结构晶须,由于其在现代电子学中的巨大应用潜力而受到积极讨论。我们首次提出并实现了一种基于 C 70 分子在基底表面热蒸发过程中自组织的纳米结构 C 70 富勒烯晶须的合成方法。我们发现,在基底表面的甲苯中 C 70 溶液滴蒸发后,C 70 纳米晶须的合成开始取决于基底温度。我们已提供实验证据表明,初始液滴中 C 70 浓度的增加和基底温度的增加都会导致 C 70 纳米晶须的几何尺寸增加。所获得的结果为溶质浓度和基底温度在一维材料合成中的作用提供了有用的见解。
背景:脑电图(EEG)越来越多地用于监测全身麻醉的深度,但是大麻醉监测的EEG数据很少被重复用于研究。在这里,我们探索了从一般麻醉中重新利用脑电图监测,用于使用机器学习进行大脑年龄建模。我们假设在全身麻醉期间从脑电图估算的大脑年龄与围手术期风险有关。方法:我们在稳定的丙泊酚或稳定的丙烷麻醉下重新分析了323例患者的四局EEG,以研究四个EEG特征(EEG功率的95%(95%EEG功率<8 E 13 Hz)的年龄预测:总功率,Alpha频段,Alpha频段,Alpha band Power(8 E 13 Hz),Power Spectrum和Spatial spatial和Spatsial spatsial sy fromeny confurears和Spats spats spatsial sy频率。我们在丙泊酚麻醉期间由健康参考组(ASA 1或2)的EEG构建了年龄预测模型。尽管所有签名都是信息丰富的,但最先进的年龄预测性能通过沿整个功率谱的电极进行解析(平均绝对误差¼8.2岁; R2¼0.65)来解锁。结果:ASA 1或2例患者的临床探索表明,脑年龄与术中爆发抑制正相关,这是全身麻醉并发症的危险因素。令人惊讶的是,大脑年龄与较高的ASA分数患者的爆发抑制作用,表明隐藏的混杂因素。次级分析表明,与年龄相关的脑电图特征是丙泊酚麻醉的特异性,这是通过有限的模型概括对用sevo lureane维持的麻醉的。结论:尽管全身麻醉的脑电图可能实现最新的年龄预测,但麻醉药物之间的差异会影响脑时代模型的有效性和有效性。为了释放脑电图监测临床研究的休眠潜力,至关重要的是,具有精确记录药物剂量的异质种群的较大数据集至关重要。
在过去的二十年中,巨大的努力一直致力于有机光伏(OPV),这导致了单个连接设备的20%功率转化效率(PCE)的破坏屏障。[1-7]最近,非富烯烯低带隙受体材料(NFA)在其热稳定性上受到了极大的关注,[8,9]广泛的吸收率范围,这会导致有效的太阳光子收获,从而导致高输出电流密度,从而降低了非辐射能量损失,从而降低了非辐射能量,从而提供了高度的能量,并提供了较高的能量水平[11,12]和[11,12]和[11,12]和[11,12]。[5,13,14]从设备的角度来看,增强NF-OPV的光电流和光电压是提高光伏性能的最直接策略。[1]此外,众所周知,供体和受体材料之间的分子方向在电荷转移动力学中起着至关重要的作用。[15]因此,NFA的各向异性结构(例如Y6和Y7)确保了有效的π–π相互作用,该相互作用与调谐相位分离的供体匹配。[16]结果,NF-OPV通过用可忽略的驾驶能量分离激子,证明了有效的能力,相对于使用的供体材料的能级,获得了高PCE。[17,18]因此,这些显着的优势,避免了电压损耗和电荷产生之间的权衡行为,[19]提供无障碍的自由电荷产生,抑制了电荷载体重组以及增强所得设备的电荷迁移率。[5,19,20]
基于富勒烯的三明治已成为电子或能量存储中二维纳米材料潜在应用的新候选者。最近,实验者观察到富勒烯簇的边界的演变,这些簇夹在两个石墨烯层中,而在富勒烯层中发现了典型的尺寸为30Å的真空空间。由于富勒烯簇的模式会影响三明治的物理特性,因此了解其结构转化的机制很重要。在目前的工作中,我们发现石墨烯/富勒烯/石墨烯三明治结构在三种构型之间转换,具体取决于富勒烯与石墨烯面积比。分子动力学模拟表明,面积比有两个临界值。富勒烯模式从圆形转变为矩形
基于小型供体型分子,具有电子受体的有机散装异质结太阳能电池,主要是由于其长波长的吸收而显示出记录的效率,从而有效地收获了太阳能光,因此会导致高电流密度。同时,供体和受体材料的HOMO和LUMO水平的相对位置决定了开路电压。在这里,我们将超快的瞬态吸收和瞬态发光技术与专门设计的多元曲线分辨率建模一起详细解决荷载载体的产生和重组动力学。我们证明了仔细调整同型和Lumo水平的重要性,因为它们的位置决定了界面电荷转移(CT)状态的形成和重组率。不足的供体和受体Lumo水平偏移低于〜300 MEV,导致CT状态效率缓慢且效率低下,而HOMO水平低于〜100 MEV的偏移导致CT状态的快速重组,我们将其归因于从供体向受体转移的后部转移。
近年来,人们通过巧妙的路线/方法合成了分子内富勒烯,即将几种低质量分子(如 H2、HD、HF、H2O、CH4)封装在富勒烯笼内,这些方法涉及复杂的化学和物理过程,如被称为分子手术的多步有机合成程序。[1–7] 人们随后利用各种光谱技术对这种轻分子内富勒烯进行了研究,例如红外/远红外 (IR/FIR)、非弹性中子散射 (INS)、核磁共振 (NMR)、X 射线衍射,发现它们表现出独特和非常规的性质,因为捕获分子动力学具有高度量子性,特别是在低温实验条件下的证据。[3,8–16] 此外,其中一些物质也因潜在的长期应用而受到关注
(Ln) 基复合物应运而生,表现出高磁阻塞温度,通常还具有足够的氧化还原稳定性。[16–18] 然而,最近旨在研究电子通过单个 SMM 的磁性系统的实验表明,至少在基于 Ln 的双层 SMM 中,4f 电子通常难以接近,因为它们的空间局域化和能量位置远离费米能级。[19–25] 因此,通过电子传输直接寻址分子内部的 4f 磁矩需要系统具有可行能量的电子轨道和一定的空间延伸,就像早期的 Ln 物种一样 [25] 或电子态与 4f 轨道强烈杂化而不会改变磁性复合物特殊磁性的系统。 [26,27] 在这方面特别有趣的是功能化的内嵌二金属富勒烯,它在两个铁磁耦合的 Ln 原子之间引入了单电子键,是目前最有前途的 SMM 类型之一。 [28] 然而,尽管它们的碳笼完全吸收了表面沉积时的电荷重新分布,有利于其磁稳定性, [29] 但与此同时,它们的内嵌结构阻碍了直接进入分子内部,这在应用方面是不可避免的。 因此,到目前为止还没有报道过任何实验证明能够在传输测量中进入它们的磁芯。 在本文中,我们重点研究内嵌二金属富勒烯复合物 Ln 2 @C 80 (CH 2 Ph),以下称为 { Ln 2 }。 [30] 这些分子由一个大致呈球形的富勒烯笼组成,里面包裹着两个 Ln 3 +离子,见图 1 a。两种镧系离子共用一个单电子共价键,通过在 C 80 笼中添加 CH 2 Ph 侧基来稳定该键。这种金属-金属键导致 [Ln 3 + – e – Ln 3 + ] 系统中的 Ln 中心之间发生强交换,从而导致块体 [28] 和亚单层中均具有出色的磁性。[31,32] Liu 等人 [33] 已证明 Ln-Ln 键合分子轨道 (MO) 分裂成两个完全自旋极化且能量分离良好的组分,未占据组分位于笼基最低未占据 MO (LUMO) 下方并部分定位在 C 80 笼上,因此原则上可以在扫描隧道显微镜/光谱 (STM/STS) 中寻址。
溶液中,用于制造新一代电子和光电子设备,其特点是机械灵活性、重量轻和制造技术廉价。在这个领域,这些碳同素异形体受到推崇,不仅是因为它们迷人的结构和物理特性,还因为它们最初是少数几个由于其强电子亲和力而能够显示大量 n 型传输的分子系统之一。然而,在其原始形式下,C 60 分子溶解度非常低,不能提供最初设想的使用灵活性。富勒烯化学 1 的发展以及使用这些方法合成的大量可溶液加工的衍生物,最终推动了它们的使用,也激发了一大批科学家和工程师对这些分子的热情。此时,富勒烯已成为多种器件的常见组成部分,其中最受欢迎的是苯基-C 61 -丁酸甲酯 (PCBM) 衍生物 2,它不仅能与其他有机
太阳能电池。[2–9] 通常,会开发出由共价连接的富电子给体 (D) 和缺电子受体 (A) 单元组成的聚合物或低聚物材料。在大多数例子中,D 和 A 通过对应于分子本体异质结模型的不同长度的柔性绝缘接头连接,而只有少数具有刚性 π 共轭接头或直接连接。[1] 在双极性 D-A 聚合物中,结构具有挑战性、合成复杂性高的“双电缆”聚合物 [2–5] 最近在 SMOSC 中显示出显著提高的能量转换效率 (PCE) 超过 8.4%。在这些材料中,D 和 A 单元的层状相分离通常在较高温度(高达 230°C)下实现,从而产生具有高热稳定性和光稳定性的太阳能电池。 [1c,3–5] 目前,这些结果已经被随机D-A嵌段共聚物[6–8]所超越,其PCE达到了8.6% [7],甚至有望达到11.3% [8],达到了工业应用的10%技术壁垒。[1c,10]
