摘要:目前,妊娠期糖尿病(GDM)的发病率呈上升趋势。GDM 与母亲、胎儿和新生儿的短期和长期不良结局相关。本研究的目的是比较患有和未患有 GDM 的女性不良围产结局的发生率,以及比较患有和未患有 GDM 的女性所生早产儿的发病率和死亡率。本研究对 2019 年 1 月至 2020 年 12 月期间入住山东大学齐鲁医院新生儿重症监护室的 640 名早产儿进行了回顾性分析。根据母亲是否患有 GDM,早产儿分为 GDM 组(n=217)和非 GDM 组(n=423)。 GDM 妇女年龄较大(P<0.01),且多为高龄产妇(≥35 岁)或经产妇(P<0.001),且发生妊娠期高血压(P<0.05)、前置胎盘(P<0.005)和多囊卵巢综合征(P<0.05)的风险较高。在早产儿中,GDM 母亲所生婴儿发生呼吸窘迫综合征(P<0.001)和败血症(P<0.05)的风险较高。此外,GDM 母亲所生极低出生体重婴儿发生低血糖症(P<0.05)和败血症(P<0.05)的风险较高。在 Logistic 回归分析中,RDS 是与 GDM 独立相关的唯一疾病[调整后的优势比:1.699(95% 置信区间:1.699‑1.699)]。但两组死亡风险无明显差异。总之,本研究数据表明,GDM与孕妇发生不良围生结局的风险增加有关,并且早产儿发生不良新生儿结局的风险也增加。
众所周知,发酵食品中的微生物含有代谢产物,可能改善人类和动物的健康。然而,尽管对发酵食品的功能作用进行了一些研究,但有效芽孢杆菌菌株的分离和鉴定仍在进行中。本研究的目的是从分子上鉴定发酵食品来源中产生生物膜的芽孢杆菌属 (BPB) 和酵母,并研究它们与 Lysinibacillus louembei 菌株的相互作用。共获得 133 个芽孢杆菌分离株以及 32 个酵母分离株,以进行详细鉴定和研究。根据使用 fibE 聚合酶链式反应 (PCR) 多重和 ITS-PCR 技术的表型和分子表征,芽孢杆菌属的种类被鉴定为短小芽孢杆菌 (12%)、枯草芽孢杆菌 (12%)、萨法芽孢杆菌 (6%)、解淀粉芽孢杆菌 (6%)、地衣芽孢杆菌 (6%) 和酿酒酵母 (0.05%)。使用多重 PCR 扩增了枯草芽孢杆菌、地衣芽孢杆菌和短小芽孢杆菌中参与生物膜形成过程的 yfi Q、eps H、ymc A 和 tas A 基因,并对其进行了鉴定和确认。作为表型结果,使用刚果红琼脂法 (CRA) 鉴定了 45% 的 BPB 分离株。使用乳化指数 (EI24) 测试了芽孢杆菌和酵母生产生物表面活性剂的能力。65% 和 69% 的芽孢杆菌和酵母分离株能够乳化汽油。56% 的芽孢杆菌分离株生物表面活性剂粗提取物对大肠杆菌、金黄色葡萄球菌和沙门氏菌表现出抗菌活性。在芽孢杆菌属、酿酒酵母和 L. louembei 之间进行了培养。结果,在酵母菌株 V3 与 B. pumilus 菌株 VB15 以及 L. louembei 与解淀粉芽孢杆菌中获得了类共生相互作用,在酿酒酵母菌株 P3 和芽孢杆菌属中获得了类竞争相互作用。菌株 VP11,以及与 B. pumilus 和 S. cerevisiae 以及芽孢杆菌属菌株 VP34 和 S. cerevisiae 菌株 P1 的类反式相互作用。这些结果表明,微生物在发酵过程中保持着不同的关系。关键词:芽孢杆菌、酿酒酵母、Lysinibacillus louembei、发酵食品、微生物相互作用、生物表面活性剂、生物膜。引言微生物对各种食品的发酵是最古老的食品生物保存形式之一(Diaz-
考虑到巴西能源政策的未来,在技术、商业和能源矩阵变化面前,必须考虑更加分散的能源系统的前景。因此,产消者形象与新商业模式 (BM) 相结合为该行业带来了机遇和挑战。本文旨在巩固知识,识别和理解巴西能源市场产消者和产消者驱动的 BM 发展的主要监管障碍和推动因素。对现有法规的全面审查为改进产消者聚集的相关法律框架提供了一个起点。然后,对巴西监管框架中的创新 BM 进行分析,以期指导该国未来发展政治和监管环境的决策。本文最后提出了促进巴西能源行业产消者聚集的政策建议。我们得出的结论是,产消者整合的主要障碍是监管和技术性质的,探索创新 BM 对于该行业的发展至关重要。重新定义公用事业的角色和责任是一个关键因素,同时探索集体自我消费。
本备忘录旨在解决《资源保护与回收法案》(RCRA)中关于危险废物燃料混合活动监管状况的一系列问题。备忘录主要涉及通常被称为“燃料混合器”的设施,尽管这些设施的废物管理活动通常包括一系列综合废物处理操作,这些操作比燃料混合活动本身更加多样化和复杂。关于《资源保护与回收法案》许可要求和土地处置限制(LDR)要求对这些设施的适用性,已经提出了许多问题。下面提供的指南一般性地讨论了这些问题。但是,由于许多燃料混合操作都很复杂,因此可能存在一些特定于设施的监管问题,最好根据具体情况进行解决。
2 兰契大学植物学系,兰契,贾坎德邦,印度 3 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 4 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 摘 要 本研究旨在建立一种优化的印度芥菜 (L.) Czern & Coss. (芥菜) 不同部位的体外愈伤组织诱导和增殖方案。将叶和茎外植体培养在补充了各种生长素和细胞分裂素浓度的 Murashige 和 Skoog (MS) 培养基中,以获得愈伤组织形成的最佳生长条件。所测试的激素组合包括 0.5、1 和 2 mg/L 的吲哚-3-乙酸 (IAA)、0.5、1 和 2 mg/L 的苄氨基嘌呤以及 0.5、1 和 2 mg/L 的 2,4-二氯苯氧乙酸 (2,4-D)。基于愈伤组织诱导频率,在不同时期和光照、温度和湿度培养条件下,对叶片和茎外植体产生的愈伤组织进行三次重复评估。在以 1:1 的比例补充 BAP 和 2,4 D 的 MS 培养基中,将叶片作为外植体的结果显示,接种 45 天后愈伤组织诱导率最高,这是独一无二的。茎外植体接种 45 天后,在激素浓度 BAP:IAA(0.5:1)下产生愈伤组织。这些产生的愈伤组织显示出明显的伸长和良好的叶片形状。未分化愈伤组织增生、变绿并形成成熟芽凸显了愈伤组织的有效性。继代培养后,愈伤组织的习惯化和持续传代使得培养基中无需添加细胞分裂素。愈伤组织获得细胞分裂素,导致出芽和营养器官发育。反过来,这些细胞允许器官发生,成熟植物成功再生。这种可重复的方案可用于愈伤组织诱导和植物再生,这是植物育种或生物技术应用(包括用于作物改良的基因转化)的重要工具。此外,通过既定的方案,对芥菜组织中植物激素之间相互作用的认识得到了提高。 关键词:愈伤组织、再生、生长素、作物、BAP、器官发生、芥菜 (L.) 1. 引言 在植物组织培养中,愈伤组织发生和器官发生是基因转化和作物发育所必需的过程。这些程序中的一个关键阶段是有效的愈伤组织诱导,它为以后的再生和转化提供所需的细胞材料。先前的研究表明,为了在不同芸苔属植物中获得较高的愈伤组织诱导率和植物再生,优化植物激素浓度至关重要(Gupta & Chaturvedi,2021 年;Singh 等人,2020 年)。大多数人称之为印度芥菜,Brassica juncea (L.) Czern. & Coss。是一种广泛种植的油籽作物,其油料和叶类蔬菜对经济十分重要。
矮牵牛在组织培养中的重要特征是其不可预测且依赖于基因型的愈伤组织发生,这对高效再生和生物技术应用提出了挑战。为了解决这个问题,机器学习 (ML) 可以被视为一种强有力的工具,用于分析愈伤组织发生数据、提取关键参数和预测矮牵牛愈伤组织发生的最佳条件,从而促进更可控和更高效的组织培养过程。该研究旨在利用 ML 算法开发矮牵牛愈伤组织发生的预测模型,并优化植物激素浓度以提高愈伤组织形成率 (CFR) 和愈伤组织鲜重 (CFW)。该模型的输入为 BAP、KIN、IBA 和 NAA,输出为 CFR 和 CFW。比较了三种 ML 算法,即 MLP、RBF 和 GRNN,结果表明 GRNN (R 2 83) 在准确性方面优于 MLP 和 RBF。此外,还进行了敏感性分析以确定四种植物激素的相对重要性。IBA 的重要性最高,其次是 NAA、BAP 和 KIN。利用 GRNN 模型的卓越性能,集成遗传算法(GA)来优化植物激素浓度,以最大化 CFR 和 CFW。遗传算法确定了最佳植物激素组合,即 1.31 mg/L BAP、1.02 mg/L KIN、1.44 mg/L NAA 和 1.70 mg/L IBA,CFR 为 95.83%。为了验证预测结果的可靠性,在实验室实验中测试了优化的植物激素组合。验证实验的结果表明,通过 GA 获得的实验结果和优化结果之间没有显著差异。本研究提出了一种结合机器学习、敏感性分析和遗传算法的新方法,用于建模和预测矮牵牛的愈伤组织形成。研究结果为优化植物激素浓度、促进愈伤组织形成以及在植物组织培养和基因工程中的潜在应用提供了宝贵的见解。
沃森表示,尽管爱达荷州是全美经济增长最快的州之一,但农业对爱达荷州整体经济的贡献仍然保持稳定,这一点意义重大。“该州的经济增长非常迅速,农业也跟上了步伐,”他说。“这里的农业并没有像其他州那样衰落。爱达荷州的农业仍在增长。”沃森表示,该报告旨在向立法者和其他人展示农业在爱达荷州的重要作用。爱达荷州农场局联合会主席布莱恩·塞尔表示,该报告确实做到了这一点。“这份报告中包含的数字和数据非常庞大,但对于参与该州农业产业的人来说并不奇怪,”在雪莱经营农场的塞尔说。“爱达荷州的整体经济由该州 22,877 个农场和牧场以及支持它们的相关行业支撑。”
2.4 轿厢控制设备安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 2.4.4 LS-QUIK-1 的平层/绝对楼层编码叶片和轿厢顶轮驱动编码器. . . . . . . . . . . . . . . 2-13 2.4.5 TM 开关(如果使用). . . . . . . . . . . . . . . . . . . 2-13 2.4.6 门操作器二极管(如果使用). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .2-13
上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。