引言:规范/引力对偶背景下的一个核心问题是理解体经典几何是如何编码在边界态的纠缠结构中的,人们希望通过研究冯·诺依曼熵在这种环境下特有的性质来提取有关这种编码的有用信息。互信息一夫一妻制 (MMI) 的发现 [4,5] 表明,对于几何状态,即与经典几何对偶的全息共形场论 (CFT) 的状态,Hubeny-Rangamani-Ryu-Takayanagi 处方 [6,7] 意味着边界 CFT 中空间子系统的熵满足一般不适用于任意量子系统的约束。此后,人们发现了新的全息熵不等式,全息熵锥 (HEC) [8] 得到了广泛的研究 [9 – 20] 。随着参与方数量 N 的增加,寻找新的不等式很快变得在计算上不可行
是计算机科学和运筹学中最基本的问题之一。在过去的半个世纪里,人们致力于开发时间高效的线性规划求解器,例如单纯形法 [23]、椭球法 [44] 和内点法 [41]。近几年,利用内点法 (IPM) 加速线性规划求解得到了深入研究 [20, 55, 13, 35, 65, 25, 71]。当 m ≈ n 时,最先进的 IPM 运行时间为 O(m2+1/18+mω),当 m≫n 时,运行时间为 O(mn+n3)。为了实现这些令人印象深刻的改进,大多数此类算法利用随机和动态数据结构来同时维护原始解和对偶解。虽然这些算法在时间上是高效的,但它们不太可能以空间高效的方式实现:维护原始对偶公式需要 Ω(m + n2) 空间,当 m ≫ n 时尤其不能令人满意。在本文中,我们研究了在流式模型中求解线性规划的问题:在每一遍中,我们可以查询 A 的第 i 行和 b 的对应行。目标是设计一个既节省空间又节省遍历次数的 LP 求解器。所谓高效,我们的目标是获得一种不依赖于 m 的多项式的算法,或者更具体地说,我们提出一个健壮的 IPM 框架,该框架仅使用 e O(n2) 空间和 e O(√n log(1/ϵ)) 次遍历。1据我们所知,这是实现与 m 无关的空间和遍历最高效的流式 LP 算法。目前最好的 LP 流式算法要么需要 Ω(n) 次传递,要么需要 Ω(n2+m2) 空间来进行 O(√n) 次传递。对于高密集 LP(m≫n)的情况,我们的算法实现了最佳空间和传递。获得这些 LP 算法的关键因素是从时间高效的原始对偶 IPM 转变为时间效率较低的仅对偶 IPM [64]。从时间角度来看,仅对偶 IPM 需要 e O(√nlog(1/ϵ)) 次迭代,每次迭代可以在 e O(mn+poly(n)) 的时间内计算完成。然而,它比原始对偶方法更节省空间。具体而言,我们表明每次迭代,只需维护一个 n×n 的 Hessian 矩阵即可。为了获得 e O ( √ n log (1 /ϵ )) 次传递,我们证明了诸如 Lewis 权重 [ 56 , 21 ] 等非平凡量可以以仅使用 e O ( n 2 ) 空间的就地方式递归计算。既然我们有了用于流式模型中一般 LP 的空间和传递效率高的 IPM,我们将使用半流式模型中的图问题应用程序对其进行实例化。在半流式模型中,每条边及其权重都以在线方式显示,并且可能受到对抗顺序的影响,并且算法可以在 e O ( n ) 空间中对流进行多次传递。2我们特别关注最大权重二分匹配问题,其中带有权重的边以流式传输给我们,目标是找到一个匹配,使其中的总权重最大化。虽然对这个问题的研究已经很多([ 2 , 36 , 24 , 3 , 9 ] 等),但大多数算法只能计算近似匹配,这意味着权重至少是最大权重的 (1 − ϵ )。对于精确匹配的情况,最近的一项研究 [ 6 ] 提供了一种算法,它取 n 4 / 3 + o (1)
1 在一些较早的文献中,偏序被写成相反的形式,即“不细化”,因此顶部和底部以及连接和相遇互换([1];[2])。 2 在范畴论中,子集的概念推广到子对象或“部分”的概念,“部分”的对偶概念(通过反转箭头获得)是划分的概念。” [5,第 85 页]
最近提出的 2 + 1 维非阿贝尔玻色子-费米子对偶在道义上将 U ( k ) N 与 SU ( N ) − k 陈-西蒙斯物质理论联系起来,为探索从阿贝尔复合粒子理论可获得的非阿贝尔量子霍尔态前景提供了一个新平台。在这里,我们重点研究将玻色子或费米子的阿贝尔量子霍尔态理论与部分填充朗道能级的非阿贝尔“复合费米子”理论联系起来的对偶。我们表明,这些对偶预测了特殊的填充分数,其中阿贝尔和非阿贝尔复合费米子理论似乎都能够承载不同的拓扑有序基态,一个是阿贝尔态,另一个是非阿贝尔态,即 U ( k ) 2 Blok-Wen 态。我们认为,这些结果并不与对偶性相冲突,而是表明了意想不到的动力学,其中红外和最低朗道能级极限无法跨对偶性交换。在这种情况下,非阿贝尔拓扑序可能会不稳定,有利于阿贝尔基态,这表明阿贝尔态和非阿贝尔态之间存在相变,该相变很可能是一级相变。我们还将这些构造推广到其他非阿贝尔费米子-费米子对偶性,在此过程中利用对偶性获得了各种成对复合费米子相的新推导,包括反普法夫态。最后,我们描述了在多层结构中,跨 N 层的复合费米子的激子配对如何也能生成具有 U (k)2 拓扑序的 Blok-Wen 态家族。
[ Mah20 , Bra18 ] 的 QFHE 构造建立在可从 LWE 假设构建的经典 FHE 方案之上。然而,他们的方案使用了特定 FHE 方案的非常特殊的属性。例如,[ Mah20 ] 使用了对偶 GSW FHE 方案 [ GSW13 ] 以及从 LWE 构建的噪声陷门无爪函数。该构造利用了这样一个事实:位 b 的对偶 GSW 加密可以转换为对该位“编码”的无爪函数对 ( f 0 , f 1 ) 的描述,对于两个原像 x 0 和 x 1 ,使得 f 0 ( x 0 ) = f 1 ( x 1 ) ,x 0 和 x 1 的第一位与 b 异或。类似地,[ Bra18 ] 关键性地使用了 GSW 加密方案和与给定密文一致的所有随机字符串集合的离散高斯结构。换句话说,这两种方案都使用了底层原语的特定实例,并利用了它们复杂的相互作用。这引出了一个自然的问题,这也是我们工作的起点:
所考虑的流形由标准形式的 σ 有限冯·诺依曼代数上的忠实正常状态组成。讨论了切平面和近似切平面。假设给出一个相对熵/散度函数。它用于推广连接一个状态到另一个状态的指数弧的概念。指数弧的生成器被证明是唯一的,直到加法常数。在荒木相对熵的情况下,冯·诺依曼代数的每个自伴元素都会生成一个指数弧。组合指数弧的生成器被证明是相加的。从荒木相对熵得出的度量被证明可以重现久保-森度量。后者是线性响应理论中使用的度量。e 和 m 连接描述了一对对偶几何。任何有限数量的线性独立生成器都会确定一个状态子流形,该子流形通过指数弧与给定的参考状态相连。这样的子流形是对偶平面统计流形的量子概括。
近年来,人们发现了量子信息论与量子引力之间的一些深层次联系。AdS/CFT 对偶为研究这些联系提供了一个富有成效的框架。这种关系的主要例子是 Ryu-Takayanagi 公式,它为对偶 CFT 中的纠缠熵提供了几何解释 [1]。Van Raamsdonk 也强化了这种关系 [2]。他认为两个区域之间的纠缠量与它们的距离有关,我们可以通过纠缠自由度来连接几何,通过解开纠缠来分离它们。后来,这一观察导致了 ER=EPR 猜想 [3]。下一个例子来自将块算子重构为一组非局部模糊的 CFT 算子 [4-6],这导致了一些悖论。为了解决这些悖论,[7] 的作者使用了量子纠错码的概念。量子引力与量子信息论之间的第三个联系是量子计算复杂性 [8]。这些想法源于一个关于热平衡下 AdS 黑洞爱因斯坦-罗森桥增长的难题。全息复杂性使我们能够理解视界背后丰富的几何结构。量子复杂性的一个特性是,即使在边界理论达到热平衡之后很长时间,它仍会继续增长。事实上,据推测复杂性会持续增长,直到系统自由度数量呈指数增长的时间尺度 [9-11]。量子计算复杂性是量子信息论中的一个概念,它估计从简单的基本门构建所需目标状态的难度。在这个概念中,门是可以从全集中获取的幺正算子 [12,13]。在 AdS/CFT 对应关系的背景下,提出了两种评估边界态复杂性的建议。第一个是,复杂度应该是极值余维数为 1 的块超曲面 Σ 的体积的对偶,该曲面在定义边界状态的时间片上与渐近边界相交。该陈述总结为:CV = max V Σ
3.2.2 对偶向量、内积、范数和希尔伯特空间 ..................................................................................23 3.2.3 正交基 ..................................................................................................................................25 3.2.4 矩阵和伴随矩阵 ..................................................................................................................27 3.2.5 外积 ..................................................................................................................................27 3.2.5 外积 ..................................................................................................................................27 29 3.2.6 完备性关系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.10 矩阵内的内积. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 42 3.2.17 柯西-施瓦茨不等式..................................................................................................................................................44 3.3 概率论..................................................................................................................................................................................45 3.3.1 随机变量和概率分布..................................................................................................................................................45 3.3.2 条件概率..................................................................................................................................................................................45 3.3.2 条件概率..................................................................................................................................................................................45 . ...
引言。全息术是最有前途的想法之一,它提供了量子引力的非微扰公式[1]。这种方法在反德西特(AdS)空间全息术中非常成功,即 AdS = CFT 对应[2]。另一方面,要理解现在的宇宙是如何产生的,我们需要一个德西特(dS)空间而不是 AdS 空间中量子引力的完整公式。尽管在四维高自旋引力中已经有了具体的提议[9],并且在 dS = dS 对应[10 – 13]、全息纠缠熵[14 – 17]和 dS 静态贴片全息术[18,19]方面也取得了有趣的进展,但我们仍然缺乏对 dS 空间全息术的理解,即所谓的 dS = CFT 对应[3 – 5](另见参考文献[6 – 8])。尤其是,我们缺少了对偶共形场论 (CFT),它存在于爱因斯坦引力中德西特空间的过去-未来边界上。这封信旨在为三维 dS 提出这个基本问题的解决方案。三维德西特空间的特殊之处在于它由陈-西蒙斯规范理论 [20] 描述,并且假设 dS = CFT 的标准思想,它预计与二维 CFT 对偶。S 3 上的陈-西蒙斯引力描述是德西特空间的欧几里得对应物,由一对 SU(2) 陈-西蒙斯规范理论 [20] 描述。此外,众所周知,SU(2) 陈-西蒙斯理论是