葛先辉教授2006年于中国科学院上海天文台获博士学位。2006年至2008年在韩国亚太理论物理中心从事博士后研究。2008年至今在上海大学物理系工作,现担任系主任。其研究主要集中于引力与宇宙学、AdS/CFT对应、黑洞物理和强耦合量子多体系统。致力于强耦合量子输运中的规范引力对偶、黑洞信息丢失问题和量子多体SYK(Sachdev-Ye-Kitaev)模型的研究。 ————————————-
简介 — 近年来,对称性的概念在量子场论和凝聚态系统的理论研究的各个方面都得到了推广。其中一种推广就是允许所涉及的对称操作具有某些不可逆性,由此产生的结构现在被称为不可逆对称性,是一个活跃的研究领域。然而,在创造这个时髦的名字之前,这种操作的重要例子已经为人所知数十年,最典型的是伊辛模型的 Kramers-Wannier 对偶变换 D。这种变换在临界状态下与哈密顿量可交换,因此起着与普通对称操作类似的作用。尽管如此,它并不完全等于 1,而是满足
16MA607 数值方法与优化 4 - 0 - 0 - 4 方程和特征值问题的解:线性插值法、假位置法、牛顿法、不动点定理陈述、不动点迭代、高斯消元法解线性系统、高斯-约登法和迭代法、高斯-约登法求矩阵逆、幂法求矩阵特征值。常微分方程的初值问题:单步法、泰勒级数法、欧拉法和修正欧拉法、用于解一阶和二阶方程的四阶龙格-库塔法。多步法:Milne 和 Adam 的预测器和校正器方法。线性规划:公式化、图形和单纯形法、大 M 方法、两相法、对偶单纯形法、原始对偶问题。无约束一维优化技术:必要和充分条件。无限制搜索方法:斐波那契和黄金分割法、二次插值法、三次插值和直接根法。无约束 n 维优化技术:直接搜索法、随机搜索、模式搜索和 Rosen Brooch 的山丘声称法、下降法、最速下降法、共轭梯度法、拟牛顿法。约束优化技术:必要和充分条件、等式和不等式约束、Kuhn-Tucker 条件、梯度投影法、割平面法、罚函数法。动态规划、最优化原理、递归方程方法、最短路线应用、货物装载、分配和生产计划问题。教科书/参考文献:1.S. S. Rao,“能源优化理论与实践”,John Wiley and Sons,2009 年。2.Taha H. A.,“运筹学——导论”,第八版,Prentice Hall
渐近对称性是在无穷远处不消失并能保持边界条件的局部对称性。它们被认为代表了系统的物理对称性。例如,在 AdS/CFT 对偶的背景下,渐近 AdS 时空中的渐近对称性对应于边界系统的全局对称性。对于黑洞几何,重点通常放在视界以外的物理上。在这种情况下,可以方便地将事件视界视为有效意义上的“边界”,例如在所谓的膜范式 [ 1 ] 中就是这样做的。将渐近对称性的讨论扩展到事件视界并考虑保持黑洞几何视界的微分同胚 [ 2 – 6 ] 及其物理含义是很自然的。
摘要 我们研究了由爱因斯坦引力与具有非平凡势的标量场耦合而成的全息五维模型中全息子区域复杂性的体积公式。对偶四维规范理论不是共形的,并且在两个不同的固定点之间表现出 RG 流。在零度和有限温度下,我们表明全息子区域复杂性可用作模型非共形性的度量。该量在纠缠区域的大小方面也表现出单调行为,就像此设置中的纠缠熵的行为一样。对于零温度下的全息重正化子区域复杂性,由于连接和断开的最小表面之间的解缠转变,也存在有限的跳跃。
TGD 导致了 [46, 56] 中讨论的两种关于物理学的观点。在第一种观点 [14, 13, 17] 中,物理学被视为时空几何,在 H = M 4 × CP 2 中被确定为 4 曲面,在更抽象的层面上,物理学是“经典世界的世界”(WCW)的几何,由基本作用原理的优选极值(PE)空间组成,将玻尔轨道的类似物定义为具有奇点的极小曲面。在第二种观点 [29] 中,物理学被简化为数论概念,类似于动量空间的 M 8 中的 4 曲面定义了基本对象。类似于动量位置对偶的 M 8 − H 对偶 [42, 43] 将这两种观点联系起来。 M 8 c (复数 M 8 ) 中的 4 曲面,可解释为复数八元数,它们必须是结合的,即它们的法向空间是四元的。对于给定的时空区域,它们由实参数多项式 P 的根延至 M 8 c 中的多项式来确定。这些根定义了 M 4 c ⊂ M 8 c 的质量壳层集合,通过全息术,它们定义了 H 的 4 维表面。H 级的作用原理由 TGD 的扭转升力决定,是 4-DK¨ahler 作用与体积项 (宇宙常数) 之和。它不是完全确定性的,H 中作为 PE 的时空曲面与玻尔轨道类似,可视为具有框架的肥皂膜的类似物,对应于确定性失效的奇点。除了由 P 的根确定的光骨架本时 a = an 对应的双曲 3 曲面外,框架还提供额外的全息数据。框架包括部分子 2 曲面的类光轨道和连接它们的弦世界面。新颖之处在于,与零能量本体论 (ZEO) [33] 一致的是,类空间数据对于全息术来说是不够的,还需要类时间数据,而弦世界面对于编织和 TQC 来说是绝对必要的。
尽管拓扑保护对于实现可扩展量子计算机显然必不可少,但拓扑量子逻辑门的概念基础可以说仍然不稳定,无论是在物理实现方面还是在信息论性质方面。基于弦/M 理论中的缺陷膜 [SS22-Def] 以及凝聚态理论中的全息对偶任意子缺陷 [SS22-Ord] 的最新成果,我们在此解释(如 [SS22-TQC] 中所述)如何通过拓扑有序量子材料中的任意子缺陷编织来规范实际的拓扑量子门,在参数化点集拓扑中具有令人惊讶的巧妙表述,这种表述是如此基础,以至于它可以在现代同伦类型编程语言(如立方 Agda )中得到认证。