光子晶体具有通过周期性纳米结构来控制光流的能力,已成为现代光子学和光学设备工程的基石。这些晶体以折射率的周期性为特征,提供了对光传播的前所未有的控制,从而能够发展紧凑,高性能的光学设备。本评论旨在对光子晶体设备的最新进步进行广泛的概述,阐明其设计策略,制造方法以及跨多个领域的不同应用。光子晶体利用周期性结构来操纵电磁光谱,从而能够创建光子带盖,从而控制特定波长下的光流。设计策略着重于定制所需光学功能的带盖[1]。
目前曾在贾米亚·米利亚伊斯兰大学(Jamia Millia Islia University)的建筑学系担任助理教授。她在过去的十年中一直担任助理教授。并参与了建筑和硕士学位的教学,以各种能力来教授建筑服务。研究兴趣涉及建筑服务,尤其是可再生能源系统。强调其在体系结构中的应用。她已经完成了博士学位,以开发一个框架来整合印度复合气候的建筑立面上的光伏系统。她的研究兴趣包括对光伏的研究,特别是薄膜技术及其代替传统建筑皮肤的能力。
凭借各种样式和材料的光纤电缆,Glenair 能够以闪电般的速度交付原型和定制电缆。我们的 ASAP 光纤电缆服务允许客户指定各种点对点电缆组件,而无需进入复杂且耗时的报价流程(有关更多信息,请访问 www.glenair.com)。当预计现场可修复性不高且恶劣的环境和机械应力条件需要对光纤介质和端接进行额外的密封保护时,Glenair 的内部包覆成型能力是理想的选择。当需要现场可修复性时,Glenair 还可以提供由高抗压和 EMI 硬化保护介质制成的光纤导管系统,包括高温波纹管、金属芯导管和复合接线盒。
1969 年,伊拉德·博伊尔和乔治·E·史密斯在美国 AT&T 贝尔实验室发明了电荷耦合器件 (CCD)。1970 年,博伊尔和史密斯向《贝尔系统技术期刊》提交了一篇关于他们发明 CCD 的论文。他们最初的想法是制造一个存储设备。然而,随着 1970 年博伊尔和史密斯的研究成果发表,其他科学家开始在一系列应用中试验这项技术。天文学家发现,他们可以生成远处物体的高分辨率图像,因为 CCD 的光敏性比胶片高一百倍。电荷耦合器件是一种高灵敏度的光子探测器。CCD 被分成大量对光敏感的小区域(称为像素),可用于构建感兴趣场景的图像。落在
摘要本文回顾了在建筑信封上使用太阳能加热反射涂层的使用,重点是提高热力和电性能的能力。它检查了其特性,应用方法以及与不同材料的兼容性。这项研究强调了这些涂层如何减少吸热,较低的室内温度并降低空调的依赖,并在各种气候中节省大量能源。它还探讨了涂料对光伏系统效率的积极影响及其降低电力需求的潜力。审查结论是确定未来的研究需求,包括长期绩效研究和创新的材料探索。关键字:建筑性能,建筑信封,太阳能加热反射涂层,热性能,电性能
该帖子可作为无限制的欧洲研究委员会合并赠款项目的一部分,带有屁股。IvánMora-Seró教授担任首席研究员。 该项目的目的是通过卤化物钙钛矿和半导体量子点的协同相互作用来提高光伏性能。 光伏转换具有将太阳能直接转换为电力的非凡特性。 然而,已知可用的电力受所谓的冲击式盖塞(SQ)光转换极限受到严格限制。 单个吸收剂的最大效率受到限制,因为能量低于带隙(BG)的光子无法吸收,并且仅由于热化而可用于比BG更高能量的光子。 无限制将利用卤化物钙钛矿与半导体胶体量子点与所得协同作用之间的相互作用,以打破SQ极限。 这个雄心勃勃的最终目标以及中间步骤的实现将对光伏影响产生巨大影响。IvánMora-Seró教授担任首席研究员。该项目的目的是通过卤化物钙钛矿和半导体量子点的协同相互作用来提高光伏性能。光伏转换具有将太阳能直接转换为电力的非凡特性。然而,已知可用的电力受所谓的冲击式盖塞(SQ)光转换极限受到严格限制。单个吸收剂的最大效率受到限制,因为能量低于带隙(BG)的光子无法吸收,并且仅由于热化而可用于比BG更高能量的光子。无限制将利用卤化物钙钛矿与半导体胶体量子点与所得协同作用之间的相互作用,以打破SQ极限。这个雄心勃勃的最终目标以及中间步骤的实现将对光伏影响产生巨大影响。
吹扫气体的选择也是此解决方案的重要组成部分。根据与领先的曝光工具 OEM 合作保护扫描仪光学元件的经验,Entegris 已测试并确定了一种行之有效的吹扫气体源,以最大限度地降低和消除光刻工艺的风险。吹扫气体系统已获批准,可与这些相同曝光工具中的透镜组件一起使用。此外,高光学纯度对光罩的数值孔径没有影响。这种吹扫气体源对操作员也更安全,并提供最低的运营成本。Clarilite 系统使用的气体是 Entegris 的极度洁净干燥空气 (XCDA ® )。
选择重要安全信息 我应该了解的关于 ELAHERE 的最重要的信息是什么? ELAHERE 可能导致严重的副作用,包括: 眼部问题。使用 ELAHERE 时,眼部问题很常见,也可能很严重。如果您在使用 ELAHERE 治疗期间出现任何眼部问题,包括视力模糊、眼睛干涩、对光敏感、眼睛疼痛、眼睛发红或出现新的或恶化的视力变化,请立即告知您的医疗保健提供者。继续阅读第 3 页和第 5 页有关眼部问题的信息。请参阅整本书的其他重要安全信息和随附的完整处方信息,包括黑框警告和用药指南。
颜料是在食品[1],美容产品和制药行业[2],[3]中经常使用的着色剂。颜料是一种通过波长选择吸收的物质,可修饰反射或发射光的颜色。颜料可以合成和自然地获得[4]。虽然合成色素是化学制成的,并且经常具有比天然色素相比具有可取的颜色一致性和质量,但天然色素是从矿物,植物或动物中取的。如今,天然颜料是一种天然染料之一,可以代替合成染料在各种应用中,尤其是在食品领域中。 天然色素可以源自包括细菌,真菌和藻类在内的微生物以及植物和动物[5],[6]。 色素的化学结构及其对光的反应对其颜色产生了影响。 我们的眼睛感知到颜色,因为某些颜料在反射其他颜料时吸收了某些波长。 颜色的寿命可能会因其化学结构及其存在的环境而变化或改变。 例如,某些色调更适合特定应用,因为它们在暴露于热,光或化学物质时不会很容易褪色[7]。 并非每个着色剂都可以安全地用于所有应用中。 如果食用,吸入或浸泡在皮肤上,有些人可能有毒。 因此,为特定应用程序选择它们至关重要。如今,天然颜料是一种天然染料之一,可以代替合成染料在各种应用中,尤其是在食品领域中。天然色素可以源自包括细菌,真菌和藻类在内的微生物以及植物和动物[5],[6]。色素的化学结构及其对光的反应对其颜色产生了影响。我们的眼睛感知到颜色,因为某些颜料在反射其他颜料时吸收了某些波长。颜色的寿命可能会因其化学结构及其存在的环境而变化或改变。例如,某些色调更适合特定应用,因为它们在暴露于热,光或化学物质时不会很容易褪色[7]。并非每个着色剂都可以安全地用于所有应用中。如果食用,吸入或浸泡在皮肤上,有些人可能有毒。因此,为特定应用程序选择它们至关重要。