摘要。神经调节在解读神经回路和探索神经系统疾病的临床治疗中发挥着不可估量的作用。光声神经调节是一种新兴的模式,它受益于超声波的高穿透深度以及光子的高空间精度的优点。我们总结了各种用于神经调节的光声平台的最新发展,包括基于光纤、薄膜和纳米传感器的设备,强调了每个平台的主要优势。讨论了光声作为一种可行的神经调节工具的可能机制和主要障碍。提出了基础研究和转化研究的未来方向。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.032207]
摘要:近年来,二维磁性材料 (2DMM) 已成为二维材料领域的一个研究热点,因为它们在基础研究以及未来自旋电子学、磁子学、量子信息和数据存储等技术相关应用中具有重要意义。2DMM 丰富的工具箱及其多样化的可调谐性使得对二维磁序的研究达到了前所未有的水平,研究范围深入到单原子层材料,远远超出了经典的薄膜磁性,为电子学、磁光学和光子学提供了一条极具前景的途径。在各种自由度中,自旋和声子 (即晶格振动的量子) 之间的相互作用,即所谓的自旋-声子耦合,是探索二维磁性的重要调谐旋钮,创造了新型准粒子并控制磁序。本综述概述了 2DMM 中自旋-声子耦合研究的最新进展。讨论了利用自旋-声子耦合研究二维磁性的各种技术。本文还总结了基于自旋-声子耦合调节二维磁序的最新进展,重点介绍了新功能。此外,本文还简要讨论了基于自旋-声子耦合的器件开发和概念。本综述将为我们介绍二维磁体及其功能器件中自旋-声子耦合研究的现有挑战和未来方向。
志勇、苍怀兴和杨鑫 2020. 基于薄膜氮化镓 (GaN) 的声流体镊子:建模和微粒操控。超声波 108,106202。10.1016/j.ultras.2020.106202
摘要:钻石中氮呈(NV)中心的电荷状态是下一代量子传感,通信和计算的先决条件。在这里,我们使用声子辅助的反stokes激发来实现NV 0和NV-状态之间的可逆转换。在这种情况下,我们观察到具有寿命长达数十秒钟的NV-中心的两个衰减过程。通过研究NV-状态的光谱结构演化的动力学,我们发现NV-中心的光谱结构是通过反stokes激发的电荷状态过渡过程调节的。我们提出的主要原因是由NV-的电离产生的局部电场,它改变了颜色中心的辐射环境。我们的结果可能提供了一种控制氮 - 视牙中心的电荷状态的替代方法。关键字:钻石,电荷状态控制,声子辅助上转换,量子光学■简介
识别电子,自旋和晶格自由度之间非平衡能量转移机制的微观性质对于理解超快现象(例如操纵飞秒时间表上的磁性)至关重要。在这里,我们使用时间和角度分辨的光发射光谱法可以超越经常使用的集合平均视图,从而在Quasiparticle温度下进行的非平衡动力学视图。我们显示的铁磁Ni表明,非平衡电子和自旋动力学表现出明显的电子动量变化,而磁交换相互作用仍然是各向同性的。这种高光是晶格介导的散射过程的影响,并为揭开旋转晶格角动量转移的仍然难以捉摸的显微镜机理打开了途径。
图 2:金刚石在双层 (a) 和多层 (b) 薄膜厚度方向上的热导率,从薄膜底部向上 (从薄到厚,虚线),从顶部向下 (从厚到薄,实线)。模型使用散射受限建模 (粗蓝线和虚线,无方向差异) 和受限声子群体模型 (红线和虚线) 展示。自上而下,两种建模方法匹配。然而,自下而上,受限声子模型导致厚膜热导率有限,因为入射声子群体中缺乏长波声子。这导致热导率的显著差异和较大的热整流效应。为了阐明双层和多层配置,插图中提供了带有箭头指示热流方向的卡通图。
完整作者列表: Oliver, Sean;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Fox, Joshua;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Hashemi, Arsalan;阿尔托大学,应用物理系 Singh, Akshay;麻省理工学院,材料科学与工程系;印度科学研究所,物理系 Cavalero, Randal;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Yee, Sam;乔治梅森大学,物理和天文系;乔治梅森大学,量子材料中心 Snyder, David;宾夕法尼亚州立大学,电子材料与设备系,应用研究实验室;宾夕法尼亚州立大学,二维晶体联盟,材料研究所 Jaramillo, Rafael;麻省理工学院,材料科学与工程系 Komsa, Hannu-Pekka;Aalto-yliopisto,应用物理系;奥卢大学,微电子研究部 Vora, Patrick;乔治梅森大学,物理与天文系;乔治梅森大学,量子材料中心
1.1光声成像,有一些密切相关但不同的成像方式在光声成像的标题下。所有人都利用光声效应,这是当充分短的光脉冲被弹性材料吸收并随后被热化时,吸收位点将充当声脉冲的来源。1 - 3中,在所有变体中,光脉冲都针对正在研究的软生物组织,并在组织表面测量所得的声脉冲。从声脉冲的测量值中,可以形成吸收光的图像。这是光声图像。光声显微镜与光声断层扫描的不同之类的方式不同,以收集数据并形成图像。在光学显微镜中,光束或声学探测器都被牢固地聚焦并横跨组织表面扫描。1,4由于焦点引起的定位,可以直接从测量的声学时间序列中形成图像。确实,正是聚焦的紧密性决定了图像的分辨率。(源或检测器通常是栅格扫描的事实不是使显微镜的原因;一系列集中的来源或检测器也可以使用。)是释放的 - 实际上,照明的布置使整个利益区域充满光 - 并且一系列未加注(或至少不是紧密的集中)探测器可用于记录产生的声学时间序列。1,2因为光声源可以分布在整个组织中,并且每个时间序列都可以包含来自任何地方的信号(因为检测器没有重点),因此与显微镜相比,数据和源之间的连接更为复杂,并且必须使用图像重建算法来形成图像。光声断层扫描,而不是显微镜,是本综述的主要关注点,尽管所述的组织光学功能将适用于浊度介质中的所有光声成像方法。
1.1光声成像,有一些密切相关但不同的成像方式在光声成像的标题下。所有人都利用光声效应,这是当充分短的光脉冲被弹性材料吸收并随后被热化时,吸收位点将充当声脉冲的来源。1 - 3中,在所有变体中,光脉冲都针对正在研究的软生物组织,并在组织表面测量所得的声脉冲。从声脉冲的测量值中,可以形成吸收光的图像。这是光声图像。光声显微镜与光声断层扫描的不同之类的方式不同,以收集数据并形成图像。在光学显微镜中,光束或声学探测器都被牢固地聚焦并横跨组织表面扫描。1,4由于焦点引起的定位,可以直接从测量的声学时间序列中形成图像。确实,正是聚焦的紧密性决定了图像的分辨率。(源或检测器通常是栅格扫描的事实不是使显微镜的原因;一系列集中的来源或检测器也可以使用。)是释放的 - 实际上,照明的布置使整个利益区域充满光 - 并且一系列未加注(或至少不是紧密的集中)探测器可用于记录产生的声学时间序列。1,2因为光声源可以分布在整个组织中,并且每个时间序列都可以包含来自任何地方的信号(因为检测器没有重点),因此与显微镜相比,数据和源之间的连接更为复杂,并且必须使用图像重建算法来形成图像。光声断层扫描,而不是显微镜,是本综述的主要关注点,尽管所述的组织光学功能将适用于浊度介质中的所有光声成像方法。
本文档是公认的手稿版本的已发表作品,该作品以Nano Letters的最终形式出现,版权所有©2022 American Chemical Society,在出版商的同行评审和技术编辑之后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acs.nanolett.2C03427。