拟议的会议主题• 2D 量子材料及其块体对应物的合成• 具有新兴电子、光子和磁性的新型 2D 异质结构• 电子、光电子和自旋电子 2D 器件• 2D 材料的结构表征• 2D 材料和异质结构中的准粒子(例如,声子、磁振子、激子)• 2D 材料和器件特性的理论模拟• 2D 材料中的量子缺陷• 通过 2D 器件进行神经形态计算• 2D 半导体、2D 磁体、2D 铁电体和 2D 半金属。
图4。(a)从43个基因改性(GM)大米的代谢物(填充圆圈),其等源性对应物(空圆圈)和商业品种(三角形)在Suwon(黑色符号)和Gunwi(灰色符号)生长的43个代谢物(GM)和商业品种(灰色符号)的数据。(b)HCA结果是从43个基因修饰(GM)大米(填充符号)的43个代谢物及其在2012年(diamond)(钻石)(diamgle),2013年(triangle)和2014年(circle)生长的遗传修饰(GM)(填充符号)的代谢物及其同源物(空符号)。
摘要。数字孪生范式基于这样的理念:通过创建真实组件的忠实虚拟对应物,可以更好地预测和监控组件的使用寿命和性能,从而提高最终产品的安全性和成本。此类模型需要准确输入零件的初始材料状态以及整个使用寿命中的使用中载荷和损坏状态。零件的共振频率与零件的材料状态和损坏状态相关。类似地,共振频率的变化与使用中载荷和损坏导致的零件材料状态的变化相关。过程补偿共振测试 (PCRT) 利用这些物理关系,使用测量的组件共振频率执行无损评估 (NDE) 和材料特性分析。先前的研究已经建立了模拟材料性能变化、晶体取向和损伤状态对共振影响的技术,以及量化从模型输入到输出的不确定性传播。本研究考察了使用 PCRT 模型反演来获取材料特性和校准真实组件的数字孪生。首先使用尺寸和质量测量为单晶镍基高温合金样品群创建数字孪生实例。然后,在从物理对应物收集共振光谱后,采用模型反演技术来估计每个部件的弹性性能和晶体取向。然后用模型反演输出校准数字孪生。随后通过将反演结果与统计上显著的物理样本群的共振和 x 射线衍射测量进行比较来验证这些数字孪生。结果突出了特定部件材料特性对数字孪生性能的价值,以及 PCRT 评估和提高数字孪生保真度的能力。
我们表明,可以在量子电路上实现经典算术逻辑单元(ALU)的量子版本。它将执行与经典ALU相同的功能,并可能在结合中添加量子函数。为了创建量子alu,我们使用了IBM的Qiskit Python软件包和Jupyterlab。我们认为,量子ALU具有比其经典对应物更快的潜力和计算量子特定操作的能力。简单的经典函数转化为量子电路显示出具有独特量子操作的完整量子ALU的前途未来。
微生物组是特定位置的微生物社区,可能会受到许多内在和外部因素的影响,但也可能影响宿主行为,消化,寿命和进化。微生物组的这些变化及其影响对于理解宿主,微生物及其关系至关重要。但是,鸟类微生物组的研究要比其哺乳动物对应物的少得多。我们利用16S rRNA测序和生物信息学技术来表征和分析鸟类微生物组的组成和多样性。使用盐泥和海边麻雀的羽毛样品,我们研究了包括物种,性别,日期和位置在内的因素如何影响微生物组。
•技术出版物。完成的研究或重大研究阶段的报告介绍了NASA计划的结果,并包括广泛的数据或理论分析。包括大量的科学和技术数据的汇编以及被认为具有持续参考价值的信息。NASA的同行评审正式专业论文的对应物,但对手稿的长度和图形演示范围的限制较小。•技术备忘录。初步或专业兴趣的科学和技术发现,例如,快速发布报告,工作论文和书目包含最少注释的书目。不包含广泛的分析。•承包商报告。NASA赞助的承包商和受赠人的科学和技术发现。
•技术出版物。完成的研究或重大研究阶段的报告介绍了NASA计划的结果,并包括广泛的数据或理论分析。包括大量的科学和技术数据的汇编以及被认为具有持续参考价值的信息。NASA的同行评审正式专业论文的对应物,但对手稿的长度和图形演示范围的限制较小。•技术备忘录。初步或专业兴趣的科学和技术发现,例如,快速发布报告,工作论文和书目包含最少注释的书目。不包含广泛的分析。•承包商报告。NASA赞助的承包商和受赠人的科学和技术发现。
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA