这项工作旨在评估用于银河红移估计问题的光度法(高度理想化)数据集中的某些经典回归模型的性能。线性回归模型,多项式回归,决策树,随机森林和支持向量机经过训练和验证,最初是在训练样本中,与原始基本数据的5%相对应。接下来,在测试样本中评估了这些相同的模型,对应于其余95%的基数,从而允许调整后的模型概括的概括。此外,由于变量之间的高度相关性,主要组件分析技术(PCA)也用于降低系统维度。关键字:星系,光度法,回归,宇宙学,机器学习
• 太阳黑子每天都会提供视觉效果 • “活跃区域”的强磁性 • 11 年的活动周期 • 中低纬度带的形成 • “偶极子”场的 22 年极性周期
