大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
深度神经网络的最新进展成功地改善了各种学习问题[40,8,26,19,20]。但是,对于监督学习,大量的训练数据仍然是学习准确的深层模型的关键。尽管可能可用于一些预先规定的域,例如ImageNet [7],但对于每个临时目标域或任务而言,手动标签通常很难或昂贵。缺少IN-ININAIN标记的数据阻碍了在许多实际问题中拟合模型的应用。在没有来自目标域的标记数据的情况下,已经出现了无监督的域适应(UDA)方法,以减轻数据分布的域移动[2,1,1,5,37,30,18,3,3,17]。它与无监督的学习有关,因为它仅需要从源域和目标域的零标签手动标签。在最近关于UDA的工作,这是Long等人提出的开创性工作。[22,25]旨在最大程度地减少深神经网络中源和目标域之间的差异,在此,在该网络中,域差异通过最大值
核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。
最近,几种方法探索了多对比磁共振成像(MRI)超分辨率(SR)的潜力,并获得了优于单对比SR方法的结果。但是,现有方法仍然存在两个缺点:(1)它们只能解决固定的Inter Intermpling量表,例如2×,3×和4倍,它们需要培训并存储临床上每个UPSMPLAING SCALE的相应模型。(2)他们在采用方形窗口(例如8×8)变形金刚网络档案时缺乏直接交互,这导致长范围依赖性的建模不足。此外,参考图像和目标图像之间的关系尚未完全挖掘。为了解决这些问题,我们开发了一个新颖的网络,用于多对比度MRI任意规模的SR,被称为McASSR。具体来说,我们设计了矩形窗口交叉注意变压器,以在MR图像中建立长期依赖性,而无需增加计算复杂性并完全使用参考信息。此外,我们提出了参考吸引的隐式关注,作为提升的模式,通过隐式神经表示实现了任意规模的超分辨率,进一步融合了参考图像的补充信息。在公共和临床数据集上进行了广泛而全面的实验表明,我们的MCASSR比SOTA方法产生了卓越的性能,这表明其在临床实践中的巨大潜力。代码将在https://github.com/guangyuankk/mcassr上找到。
虽然最近的无模型增强学习(RL)方法已经证明了人类水平在游戏环境中的有效性,但它们在视觉导航等日常任务中的成功受到了限制,尤其是在很明显的外观变化下。此限制来自(i)样本效率不佳和(ii)对培训方案的过度效果。为了应对这些挑战,我们提出了一种世界模型,该模型使用(i)对比不受监督的学习和(ii)干预不变的统治者学习不变特征。学习世界动态的明确表示世界模型,提高样本效率,而对比度学习隐含地实施不变特征的学习,从而改善了概括。,随着对比的损失与世界模式的na'整合还不够好,因为基于世界模型的RL方法独立地优化表示表示和代理策略。为了克服这个问题,我们提出了一种干预 - 不变的正规剂,其形式是辅助任务,例如深度预测,图像DeNoising,图像分割等,以明确执行不变性以进行样式的干预。我们的方法优于当前基于最新的模型和不含模型的RL方法,并显着改善了IGIBSON基准测试中评估的分数范围内导航任务。仅使用视觉观察,我们进一步证明了我们的方法超过了最近的语言引导导航基础模型,这对于在计算功能有限的机器人上部署至关重要。最后,我们证明了我们提出的模型在吉布森基准上其感知模块的SIM到真实传输方面表现出色。
深度预测是几种计算机视觉应用程序的核心,例如自动驾驶和机器人技术。通常将其作为回归任务进行表达,其中通过网络层估算深度阀。不幸的是,很少探索深度图上值的分布。因此,本文提出了一个新颖的框架,结合了对比度学习和深度预测,使我们能够更加关注深度分布,从而对整体估计过程进行改进。有意地提出了一个基于窗口的对比学习模块,该模块将特征映射划分为非重叠的窗口,并在每个窗口内构造对比损失。形成和排序正面和负对,然后在代表空间中扩大两者之间的间隙,约束深度分布以适合深度图的特征。对Kitti和NYU数据集的实验证明了我们框架的有效性。
摘要 — 基于 SSVEP 的 BCI 在速度和准确性方面是最有前途的 BCI 之一。然而,尽管社区付出了巨大的努力使它们更加实用和用户友好,但它们使用起来仍然特别烦人。在本文中,我们研究了 SSVEP 视觉刺激的大小和对比度对分类准确性和界面烦恼的影响,总体目标是在性能和用户友好性之间找到一个平衡点。我们对十二 (12) 名参与者进行了用户研究,以评估不同刺激大小和对比度对虚拟现实环境中 SSVEP 分类准确性的联合影响。该实验的结果表明,刺激的大小对分类准确性(低于某个阈值)和感知烦恼都有显著影响。然而,对比度对分类准确性和感知烦恼都没有影响,这表明使用较低对比度的刺激仍然可以准确地操作基于 SSVEP 的 BCI。索引术语 — 组件、格式、样式、样式、插入
1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H. 通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。 使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。 扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。 关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。 简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。 纳米沉淀,乳液扩散,双重乳液。 [1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H.通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。纳米沉淀,乳液扩散,双重乳液。[1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。pe主要基于密度和分子分支的程度。在半晶体材料(如聚乙烯和聚氟乙烯)中,材料的响应取决于分子结合和体积分数,除了温度和应变速率外,还取决于结晶度的体积分数。这些材料可以被认为是由一个无定形相组成的分子网络,该相位包含具有随机定向的结晶石相的纠缠链,其作用为物理交联。[2]纳米沉淀,也称为反应降水,脱溶液,溶剂置换和溶剂转移,由Fessi et.Al.In 1989描述,是一种开发纳米颗粒和微粒的方法[1],但有关其他Polymers,包括Polyolefimers,有限的含量。由于开发的方法不使用添加剂(例如表面活性剂),因此它提供的颗粒没有杂质会诱导生物体的不良影响。需要控制纳米沉淀产生的\颗粒大小的方法。[3]此外,该方法不需要或低表面活性剂浓度。[4]纳米沉淀技术的主要原理是界面
本文提出了一种基于深度学习的可容纳性评估方法,构成了街头规模的智能手机点云和城市规模的3D行人网络(3DPN)。3DPN已被研究和映射以进行轮廓和智能城市应用。然而,由于省略的行人路径,未发现的楼梯和过度简化的高架人行道,文献中3DPN的城市水平尺度对于评估轮椅的可及性(即车轮)不完整;如果映射量表处于为轮椅使用者设计的微观级别,则可以更好地表示这些功能。在本文中,我们使用智能手机点云加强了城市规模的3DPN,这是一种有希望的数据源,用于补充细微的细节和由于厘米级别的准确性,鲜艳的色彩,高密度和人群源性质而导致的细颗粒细节和温度变化。三步方法重建行人路径,楼梯和坡度细节,并丰富城市规模的3DPN进行轮廓评估。PEDESTRIAN路径的实验结果表现出准确的3DPN中心线位置(miou = 88。81%),楼梯检测(miou = 86。39%)和轮子性评估(MAE = 0。09)。本文贡献了一种适合,准确和人群采购的轮子评估方法,该方法将无处不在的智能手机和3DPN架起高密度和丘陵的城市区域的3DPN。